论文标题

线性互补的一对有限主理想环的组代码

Linear complementary pair of group codes over finite principal ideal rings

论文作者

Liu, Hualu, Liu, Xiusheng

论文摘要

如果$ c \ oplus d = r [g] $,a对$(c,d)组代码的组代码称为线性互补对(LCP),其中$ r $是有限的主要理想戒指,而$ g $是有限的组。我们为LCP组成的组代数(g] $,为一对$(c,d)的组代码提供了必要的条件。然后,我们证明,如果$ c $和$ d $都是$ r [g] $的组代码,那么$ c $和$ d^{\ perp} $是排列相当于的。

A pair $(C, D)$ of group codes over group algebra $R[G]$ is called a linear complementary pair (LCP) if $C \oplus D =R[G]$, where $R$ is a finite principal ideal ring, and $G$ is a finite group. We provide a necessary and sufficient condition for a pair $(C, D)$ of group codes over group algebra $R[G]$ to be LCP. Then we prove that if $C$ and $D$ are both group codes over $R[G]$, then $C$ and $D^{\perp}$ are permutation equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源