论文标题

理想化GCM中对流参数的校准和不确定性量化

Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM

论文作者

Dunbar, Oliver R. A., Garbuno-Inigo, Alfredo, Schneider, Tapio, Stuart, Andrew M.

论文摘要

气候模型中的参数通常是手动校准的,仅利用可用数据的小子集。这排除了不确定性的最佳校准和量化。对于气候模型来说,允许不确定性定量的传统贝叶斯校准方法太昂贵了。在存在内部气候变化的情况下,它们也不强大。例如,马尔可夫链蒙特卡洛(MCMC)方法通常需要$ o(10^5)$模型运行,并且对内部变异性噪声敏感,这对于气候模型而言是不可行的。在这里,我们展示了一种模型校准和不确定性量化的方法,该方法仅需要$ O(10^2)$模型运行,并且可以适应内部气候变化。该方法由三个阶段组成:(i)校准阶段使用集合卡尔曼反转的变体来校准模型,通过最大程度地减少模型和数据统计之间的不匹配; (ii)使用该模型在校准阶段进行训练的模型运行,仿真阶段使用高斯工艺(GP)模拟参数到数据图; (iii)通过用MCMC对GP模拟器采样,采样阶段近似于贝叶斯后分布。我们在完美模型的设置中证明了该校准变体样本(CES)方法的可行性和计算效率。使用理想的一般循环模型,我们从模型生成的合成数据中估算了简单的对流方案中的参数。 CES方法以贝叶斯后期的近似值的参数生成概率分布,这是通常所需的计算成本的一部分。从这种近似后验中抽样允许产生具有量化参数不确定性的气候预测。

Parameters in climate models are usually calibrated manually, exploiting only small subsets of the available data. This precludes both optimal calibration and quantification of uncertainties. Traditional Bayesian calibration methods that allow uncertainty quantification are too expensive for climate models; they are also not robust in the presence of internal climate variability. For example, Markov chain Monte Carlo (MCMC) methods typically require $O(10^5)$ model runs and are sensitive to internal variability noise, rendering them infeasible for climate models. Here we demonstrate an approach to model calibration and uncertainty quantification that requires only $O(10^2)$ model runs and can accommodate internal climate variability. The approach consists of three stages: (i) a calibration stage uses variants of ensemble Kalman inversion to calibrate a model by minimizing mismatches between model and data statistics; (ii) an emulation stage emulates the parameter-to-data map with Gaussian processes (GP), using the model runs in the calibration stage for training; (iii) a sampling stage approximates the Bayesian posterior distributions by sampling the GP emulator with MCMC. We demonstrate the feasibility and computational efficiency of this calibrate-emulate-sample (CES) approach in a perfect-model setting. Using an idealized general circulation model, we estimate parameters in a simple convection scheme from synthetic data generated with the model. The CES approach generates probability distributions of the parameters that are good approximations of the Bayesian posteriors, at a fraction of the computational cost usually required to obtain them. Sampling from this approximate posterior allows the generation of climate predictions with quantified parametric uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源