论文标题

无监督的跨模式哈希的综合图形相似性保存网络

Comprehensive Graph-conditional Similarity Preserving Network for Unsupervised Cross-modal Hashing

论文作者

Yu, Jun, Zhou, Hao, Zhan, Yibing, Tao, Dacheng

论文摘要

无监督的跨模式哈希(UCMH)最近已成为一个热门话题。当前的UCMH专注于探索数据相似性。但是,当前的UCMH方法计算两个数据之间的相似性,主要依赖两个数据的跨模式特征。这些方法遭受了不准确的相似性问题,导致次优锤锤空间,因为数据之间的跨模式特征不足以描述复杂的数据关系,例如两个数据具有不同的特征表示,但共享固有的概念。在本文中,我们设计了一个深图形连贯性网络(DGCPN)。具体而言,DGCPN源于图形模型,并通过巩固数据与其邻居之间的信息来探索图形连贯性。 DGCPN通过利用三种类型的数据相似性(即图形 - 邻居相干性,共存的相似性以及内部和模式间的一致性)来调节全面的相似性,并设计半真实和半二元优化策略,以减少在哈希期间减少量化错误。本质上,DGCPN通过探索和利用图中数据的固有关系来解决不准确的相似性问题。我们对三个公共UCMH数据集进行了广泛的实验。实验结果证明了DGCPN的优势,例如,使用64位哈希式代码将平均平均精度从0.722提高到Mirflickr-25k的0.751,从图像中检索文本。我们将在https://github.com/atmegal/dgcpn上发布源代码软件包和受过训练的模型。

Unsupervised cross-modal hashing (UCMH) has become a hot topic recently. Current UCMH focuses on exploring data similarities. However, current UCMH methods calculate the similarity between two data, mainly relying on the two data's cross-modal features. These methods suffer from inaccurate similarity problems that result in a suboptimal retrieval Hamming space, because the cross-modal features between the data are not sufficient to describe the complex data relationships, such as situations where two data have different feature representations but share the inherent concepts. In this paper, we devise a deep graph-neighbor coherence preserving network (DGCPN). Specifically, DGCPN stems from graph models and explores graph-neighbor coherence by consolidating the information between data and their neighbors. DGCPN regulates comprehensive similarity preserving losses by exploiting three types of data similarities (i.e., the graph-neighbor coherence, the coexistent similarity, and the intra- and inter-modality consistency) and designs a half-real and half-binary optimization strategy to reduce the quantization errors during hashing. Essentially, DGCPN addresses the inaccurate similarity problem by exploring and exploiting the data's intrinsic relationships in a graph. We conduct extensive experiments on three public UCMH datasets. The experimental results demonstrate the superiority of DGCPN, e.g., by improving the mean average precision from 0.722 to 0.751 on MIRFlickr-25K using 64-bit hashing codes to retrieve texts from images. We will release the source code package and the trained model on https://github.com/Atmegal/DGCPN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源