论文标题

神经文本生成人工负面例子

Neural Text Generation with Artificial Negative Examples

论文作者

Shirai, Keisuke, Hashimoto, Kazuma, Eriguchi, Akiko, Ninomiya, Takashi, Mori, Shinsuke

论文摘要

神经文本生成模型在给定输入(例如机器翻译和图像字幕)上通常受到目标文本的最大似然估计来训练。但是,训练有素的模型在推理时遭受了各种类型的错误。在本文中,我们建议通过在强化学习框架中训练文本生成模型来抑制一种任意类型的错误,在该框架中,我们使用可训练的奖励功能,该功能能够区分包含目标错误类型的参考和句子。我们通过人为地将目标错误注入参考文献来创建这样的负面示例。在实验中,我们专注于两种错误类型,在模型生成的文本中重复和删除令牌。实验结果表明,我们的方法可以抑制生成错误并在两个机器翻译和两个图像字幕任务上实现重大改进。

Neural text generation models conditioning on given input (e.g. machine translation and image captioning) are usually trained by maximum likelihood estimation of target text. However, the trained models suffer from various types of errors at inference time. In this paper, we propose to suppress an arbitrary type of errors by training the text generation model in a reinforcement learning framework, where we use a trainable reward function that is capable of discriminating between references and sentences containing the targeted type of errors. We create such negative examples by artificially injecting the targeted errors to the references. In experiments, we focus on two error types, repeated and dropped tokens in model-generated text. The experimental results show that our method can suppress the generation errors and achieve significant improvements on two machine translation and two image captioning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源