论文标题

自私的缓存游戏在定向图上

Selfish Caching Games on Directed Graphs

论文作者

Ma, Qian, Yeh, Edmund, Huang, Jianwei

论文摘要

缓存网络可以通过更接近用户来降低访问内容的路由成本。但是,缓存节点可能属于不同的实体,并自私地行为最大化自己的利益,这通常会导致整个网络的性能下降。尽管有关于分配内容来缓存以最大化社会福利的广泛文献,但对自私的缓存行为的分析仍然在很大程度上尚未探索。在本文中,我们将缓存节点的自私行为建模为具有异质内容流行的任意定向图上的自私缓存游戏。我们研究了自私的缓存游戏中纯战略NASH平衡(PSNE)的存在,并在社会福利方面分析了其效率。我们表明,psne并不总是存在于任意流程的缓存网络中。但是,如果网络没有混合的请求循环,即至少一个内容请求将每个边缘遍历每个边缘的有向循环,我们表明PSNE始终存在,并且可以在多项式时间内找到。此外,我们可以通过正确选择请求转发路径来避免混合请求循环。然后,我们证明,如果我们允许任意内容请求模式,而无政府状态(POA)捕获的纳什均衡效率可能会很差,并且添加额外的高速缓存节点会使POA恶化,即高速缓存悖论发生。但是,当缓存节点具有均匀的请求模式时,我们表明POA甚至允许任意拓扑。我们进一步分析了具有有限的计算能力的缓存节点的自私缓存游戏,并表明在某些感兴趣的情况下,PSNE的近似PSNE存在。仿真结果表明,增加网络中的高速缓存能力提高了NASH均衡的效率,同时添加额外的高速缓存节点可以降低NASH Equilibria的效率。

Caching networks can reduce the routing costs of accessing contents by caching contents closer to users. However, cache nodes may belong to different entities and behave selfishly to maximize their own benefits, which often lead to performance degradation for the overall network. While there has been extensive literature on allocating contents to caches to maximize the social welfare, the analysis of selfish caching behaviors remains largely unexplored. In this paper, we model the selfish behaviors of cache nodes as selfish caching games on arbitrary directed graphs with heterogeneous content popularity. We study the existence of a pure strategy Nash equilibrium (PSNE) in selfish caching games, and analyze its efficiency in terms of social welfare. We show that a PSNE does not always exist in arbitrary-topology caching networks. However, if the network does not have a mixed request loop, i.e., a directed loop in which each edge is traversed by at least one content request, we show that a PSNE always exists and can be found in polynomial time. Furthermore, we can avoid mixed request loops by properly choosing request forwarding paths. We then show that the efficiency of Nash equilibria, captured by the price of anarchy (PoA), can be arbitrarily poor if we allow arbitrary content request patterns, and adding extra cache nodes can make the PoA worse, i.e., cache paradox happens. However, when cache nodes have homogeneous request patterns, we show that the PoA is bounded even allowing arbitrary topologies. We further analyze the selfish caching games for cache nodes with limited computational capabilities, and show that an approximate PSNE exists with bounded PoA in certain cases of interest. Simulation results show that increasing the cache capacity in the network improves the efficiency of Nash equilibria, while adding extra cache nodes can degrade the efficiency of Nash equilibria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源