论文标题
脱落的二进制系统IGR J18027-2016中的恒星风结构
Stellar wind structures in the eclipsing binary system IGR J18027-2016
论文作者
论文摘要
IGR J18027-2016是一种遮挡的高质量X射线二进制,由中子恒星从一位超级伴侣的风中积聚,$ \ sim $ 4.57天轨道时期。来源显示出不对称的日食轮廓,在几年中保持稳定。我们旨在研究由紧凑型物体和超级恒星之间相互作用形成的恒星风结构的几何和物理特性。在这项工作中,我们使用六个档案XMM-Newton观测值和积累的Swift/BAT硬X射线光曲线分析了该源沿轨道的时间和光谱演变。 XMM-Newton的光曲线表明,根据Swift/BAT数据中看到的不对称曲线,源在Eclipse的进口和出口期间硬化。在进入日食上,观察到脉冲调制减少。我们通过热弹药连续体(NTHCOMP)对XMM-Newton光谱进行建模,并添加了两条与Fe K $α$和Fe K $β$相对应的高斯发射线。我们包括两个吸收成分,以说明星际和内在介质。我们发现,日食外的本地吸收列在$ \ sim $ 6 $ 6 $ \ times $ 10 $^{22} $ 〜cm $^{ - 2} $中,而当源输入并离开eclipse时,该列会增加$ \ gtrsim $ 3,$ 35,$ 35和$ 35和$ 35和$ 35和$ 35和$ 35和$ 355 10^{22} $ 〜cm $^{ - 2} $。结合了从光谱分析得出的物理特性,我们提出了一个场景,其中光电唤醒(主要是)和吸积唤醒(其次)负责吸收柱的轨道演变,连续体发射和在FE线复合物处看到的变异性。
IGR J18027-2016 is an obscured high-mass X-ray binary formed by a neutron star accreting from the wind of a supergiant companion with a $\sim$4.57 day orbital period. The source shows an asymmetric eclipse profile that remained stable across several years. We aim at investigating the geometrical and physical properties of stellar wind structures formed by the interaction between the compact object and the supergiant star. In this work we analyse the temporal and spectral evolution of this source along its orbit using six archival XMM-Newton observations and the accumulated Swift/BAT hard X-ray light curve. XMM-Newton light curves show that the source hardens during the ingress and egress of the eclipse, in accordance with the asymmetric profile seen in Swift/BAT data. A reduced pulse modulation is observed on the ingress to the eclipse. We model XMM-Newton spectra by means of a thermally-comptonized continuum (nthcomp) adding two gaussian emission lines corresponding to Fe K$α$ and Fe K$β$. We included two absorption components to account for the interstellar and intrinsic media. We found that the local absorption column outside the eclipse fluctuates uniformly around $\sim$ 6$\times$10$^{22}$~cm$^{-2}$, whereas, when the source enters and leaves the eclipse, the column increases by a factor of $\gtrsim$3, reaching values up to $\sim$35 and $\sim$15$\times 10^{22}$~cm$^{-2}$, respectively. Combining the physical properties derived from the spectral analysis, we propose a scenario where a photo-ionisation wake (mainly) and an accretion wake (secondarily) are responsible for the orbital evolution of the absorption column, the continuum emission and the variability seen at the Fe-line complex.