论文标题

零和三角形,用于独立,能,尼罗和单位矩阵

Zero-Sum Triangles for Involutory, Idempotent, Nilpotent and Unipotent Matrices

论文作者

Hao, Pengwei, Zhang, Chao, Hao, Huahan

论文摘要

在某些矩阵编队,因素化和转换中,我们需要具有某些属性的特殊矩阵,我们希望这样的矩阵应该容易,简单地生成和整数。在本文中,我们提出了一个复发关系的零和规则,以将整数三角形构建为三角形矩阵,具有具有劳动,同性的,势力,努力和独立性的特性,尤其是nilpotent和nilpotent and Unipotent矩阵,尤其是INDEX 2的索引2。我们还为特殊的矩阵而言,我们还为特殊的矩阵和一般的方法提供了一般的方法和一般的方法。生成的整数三角形大部分是新发现的,并且可以找到更多的组合身份。

In some matrix formations, factorizations and transformations, we need special matrices with some properties and we wish that such matrices should be easily and simply generated and of integers. In this paper, we propose a zero-sum rule for the recurrence relations to construct integer triangles as triangular matrices with involutory, idempotent, nilpotent and unipotent properties, especially nilpotent and unipotent matrices of index 2. With the zero-sum rule we also give the conditions for the special matrices and the generic methods for the generation of those special matrices. The generated integer triangles are mostly newly discovered, and more combinatorial identities can be found with them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源