论文标题

欧米茄规范语言的近似自动机

Approximate Automata for Omega-Regular Languages

论文作者

Dimitrova, Rayna, Finkbeiner, Bernd, Torfah, Hazem

论文摘要

无限单词(也称为欧米茄自动瘤)上的自动机在反应性系统的验证和合成中起关键作用。 omega-automata的频谱由两个特征定义:验收条件(例如Büchi或Parity)和自动机的确定性(例如确定性或非确定性)。这些特征在自动机理论的应用中起着至关重要的作用。例如,通过专用工具和算法,可以比其他人更有效地处理某些接受条件。此外,某些应用程序(例如合成和概率模型检查)要求属性表示为某种确定性的欧米茄Automata。但是,属性不能总是由具有所需的接受条件和确定论的自动机表示。在本文中,我们研究了给定类别中自动机近似线性时间属性的问题。我们的近似值是基于将语言保留到用户定义的精度,该语言根据保留的无限执行的有限套索表示的大小。我们研究了不同类型的近似自动机的状态复杂性,并为不同的自动机类中的近似值提供了构造,例如,通过一个具有更简单的接受条件的近似自动机近似给定的自动机。

Automata over infinite words, also known as omega-automata, play a key role in the verification and synthesis of reactive systems. The spectrum of omega-automata is defined by two characteristics: the acceptance condition (e.g. Büchi or parity) and the determinism (e.g., deterministic or nondeterministic) of an automaton. These characteristics play a crucial role in applications of automata theory. For example, certain acceptance conditions can be handled more efficiently than others by dedicated tools and algorithms. Furthermore, some applications, such as synthesis and probabilistic model checking, require that properties are represented as some type of deterministic omega-automata. However, properties cannot always be represented by automata with the desired acceptance condition and determinism. In this paper we study the problem of approximating linear-time properties by automata in a given class. Our approximation is based on preserving the language up to a user-defined precision given in terms of the size of the finite lasso representation of infinite executions that are preserved. We study the state complexity of different types of approximating automata, and provide constructions for the approximation within different automata classes, for example, for approximating a given automaton by one with a simpler acceptance condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源