论文标题

精制的双重色态多项式,集成性和Schur度量

Refined dual Grothendieck polynomials, integrability, and the Schur measure

论文作者

Motegi, Kohei, Scrimshaw, Travis

论文摘要

我们构建了一个顶点模型,其分区函数是一种精制的双重粒度多项式,其中状态被解释为非电向晶格路径。使用此过程,我们显示了精制的双重色迪多项式是多功能函数,并具有许多身份,包括Littlewood和Cauchy(-little Wood)身份。然后,我们完善了Yeliussizov在双重性多项式和Johansson讨论的最后一段渗透过程(LPP)随机过程之间的联系。通过完善约翰逊的代数技术,我们展示了Grinberg猜想的偏向于精制的双重Grothendieck多项式的Jacobi-Trudi公式,并恢复了由于Baik和Rains引起的LPP与Schur过程之间的关系。最后,我们扩展了顶点模型技术,以显示一些精致的Grothendieck多项式(包括Jacobi-Trudi公式)的身份。

We construct a vertex model whose partition function is a refined dual Grothendieck polynomial, where the states are interpreted as nonintersecting lattice paths. Using this, we show refined dual Grothendieck polynomials are multi-Schur functions and give a number of identities, including a Littlewood and Cauchy(-Littlewood) identity. We then refine Yeliussizov's connection between dual Grothendieck polynomials and the last passage percolation (LPP) stochastic process discussed by Johansson. By refining algebraic techniques of Johansson, we show Jacobi-Trudi formulas for skew refined dual Grothendieck polynomials conjectured by Grinberg and recover a relation between LPP and the Schur process due to Baik and Rains. Lastly, we extend our vertex model techniques to show some identities for refined Grothendieck polynomials, including a Jacobi-Trudi formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源