论文标题
在一群无燃油的微型武器中的合作
Cooperation in a fluid swarm of fuel-free micro-swimmers
论文作者
论文摘要
合作对于群体$^1 $的生存至关重要。大规模合作使八哥捕食猎鹰$^2 $,使沙丁鱼向外玛丽特海狮$^3 $和同性恋者超过他们的更新世同伴$^4 $。在微米尺度上,由于个人的合作能力,即使在密集的包装中,细菌菌落也表现出极好的弹性,从而减轻其内部流动模式以混合营养,围栏免疫系统并抵抗抗生素$^{5-14} $。在微观尺度上生产人造群体是一个严重的挑战$ \ frac {\; \;} {\; \; \;} $,而单个细菌具有进化的内部机械来产生推进的内部机械,直到现在,直到现在,人为的微型 - wimmer都依赖于他们的环境的精确化学限制了他们的驱动器$^$^$^14-233-114-23。当拥挤时,人造的微型武器在当地竞争有限的燃料供应,以最大的合作倾向消除了彼此的活动。在这里,我们介绍了一种人工微型游动器,该微型游泳器不消耗化学燃料,并且仅由光驱动。我们将一个吸收光颗粒的粒子与流体液滴融为一体,形成胶体嵌合体,将光能转化为推进的热毛皮作用。游泳者的内部驱动器允许他们进行操作并保持长时间(天),并且它们的有效排斥相互作用允许具有高密度流体相。我们发现,高于关键的集中度,游泳者形成了一个长期存在的拥挤状态,显示出内部动力。当引入被动颗粒时,密集的游泳相可以重新安排并自发地填充被动颗粒。我们通过识别被动颗粒在控制微杆菌的有效浓度中所扮演的作用来得出一种几何耗尽状态,以识别被动颗粒的作用。
Cooperation is vital for the survival of a swarm$^1$. Large scale cooperation allows murmuring starlings to outmaneuver preying falcons$^2$, shoaling sardines to outsmart sea lions$^3$, and homo sapiens to outlive their Pleistocene peers$^4$. On the micron-scale, bacterial colonies show excellent resilience thanks to the individuals' ability to cooperate even when densely packed, mitigating their internal flow pattern to mix nutrients, fence the immune system, and resist antibiotics$^{5-14}$. Production of an artificial swarm on the micro-scale faces a serious challenge $\frac{\;\;}{\;\;}$ while an individual bacterium has an evolutionary-forged internal machinery to produce propulsion, until now, artificial micro-swimmers relied on the precise chemical composition of their environment to directly fuel their drive$^{14-23}$. When crowded, artificial micro-swimmers compete locally for a finite fuel supply, quenching each other's activity at their greatest propensity for cooperation. Here we introduce an artificial micro-swimmer that consumes no chemical fuel and is driven solely by light. We couple a light absorbing particle to a fluid droplet, forming a colloidal chimera that transforms light energy into propulsive thermo-capillary action. The swimmers' internal drive allows them to operate and remain active for a long duration (days) and their effective repulsive interaction allows for a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange and spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.