论文标题
复合介质的有效弹性波特性
Effective Elastic Wave Characteristics of Composite Media
论文作者
论文摘要
我们通过长波长(绝对)在空间中局部的构造构造关系中的两相复合材料的有效弹性动力学特性得出精确表达式。这是通过扩展以前应用于静态问题的“强对比”扩展形式主义来实现的。这些强对比度扩展明确地通过无限的$ n $ - 点相关函数来明确合并了该复合材料的完整微观结构信息。利用这些串联膨胀的快速连接特性(即使对于极端对比比),我们提取了通过光谱密度取决于微结构的准确近似值,这对于任何复合材料都易于计算或测量。我们还研究了其他地方假设的这种近似公式修饰的预测能力[J. Kim和S. Torquato,Proc。纳特。学院。科学。 $ {\ bf 117} $,8764(2020)]以扩展其适用性$ {\ it超过〜〜Quasistatic〜Semime。} $这些非局部微结构依赖性近似值的准确性通过与某些分散分配模型的完整波形模拟结果进行比较来验证。我们将公式应用于多种非液均匀和超明显的复合材料的模型。我们证明,超一样系统的损失要比其在绝对状态中的非液相均匀对应物的损失较小,而隐形的超一介质对于广泛的波数范围可以完全透明。最后,我们讨论了如何利用具有规定的弹性波特征的工程复合材料。
We derive exact expressions for effective elastodynamic properties of two-phase composites in the long-wavelength (quasistatic) regime via homogenized constitutive relations that are local in space. This is accomplished by extending the "strong-contrast" expansion formalism that was previously applied to the static problem. These strong-contrast expansions explicitly incorporate complete microstructural information of the composite via an infinite set of $n$-point correlation functions. Utilizing the rapid-convergence properties of these series expansions (even for extreme contrast ratios), we extract accurate approximations that depend on the microstructure via the spectral density, which is easy to compute or measure for any composite. We also investigate the predictive power of modifications of such approximation formulas postulated elsewhere [J. Kim and S. Torquato, Proc. Nat. Acad. Sci. ${\bf 117}$, 8764 (2020)] to extend their applicability ${\it beyond ~the ~quasistatic ~regime.}$ The accuracy of these nonlocal microstructure-dependent approximations is validated by comparison to full-waveform simulation results for certain models of dispersions. We apply our formulas to a variety of models of nonhyperuniform and hyperuniform disordered composites. We demonstrate that hyperuniform systems are less lossy than their nonhyperuniform counterparts in the quasistatic regime, and stealthy hyperuniform media can be perfectly transparent for a wide range of wavenumber. Finally, we discuss how to utilize our approximations for engineering composites with prescribed elastic wave characteristics.