论文标题

无线网络中路由的关系深度加强学习

Relational Deep Reinforcement Learning for Routing in Wireless Networks

论文作者

Manfredi, Victoria, Wolfe, Alicia, Wang, Bing, Zhang, Xiaolan

论文摘要

尽管已经对无线网络中的路由进行了广泛的研究,但现有协议通常是为特定的网络条件设计的,因此无法适应这些条件的任何急剧变化。例如,为连接的网络设计的协议不能轻松地应用于断开的网络。在本文中,我们基于深厚的强化学习制定了分布式路由策略,该策略概括为各种交通模式,拥塞水平,网络连接和链接动态。我们在设计中做出以下关键创新:(i)使用关系特征作为对决策空间的深度神经网络的输入,这使我们的算法能够推广到多元化的网络条件,(ii)将中心的决策使用以将路由问题转化为无线设备,而不是通过无线设备来将路由问题转变为促进型号,而不是通过无线设备来将路由问题转变为促进型,该模型是在促进的方法中,该模型是在促进的方法中,该方法是在无线方面的努力,该模型是一种促进型,该模型是在无线方面的努力,该模型是在促进的,该模型是在限制的过程中,该方法是在促进式的方面,该方法是在促进型号的方法,该方法是在无线方面的效力,该模型是一种方法,该模型是一种方法,该方法是一种方法,该方法是一种方法,该方法是一种方法,该方法是在促进的范围。学习,以及(iii)使用长时间操作来建模排队等待的数据包所花费的时间,从而减少所需的培训数据量,并允许学习算法更快地收敛。我们使用数据包级模拟器评估了路由算法,并表明我们的算法在培训期间学习的政策能够推广到更大且更具拥挤的网络,不同的拓扑以及不同的链接动力学。我们的算法优于最短路径和相对于每个数据包的数据包和延迟的背压路由。

While routing in wireless networks has been studied extensively, existing protocols are typically designed for a specific set of network conditions and so cannot accommodate any drastic changes in those conditions. For instance, protocols designed for connected networks cannot be easily applied to disconnected networks. In this paper, we develop a distributed routing strategy based on deep reinforcement learning that generalizes to diverse traffic patterns, congestion levels, network connectivity, and link dynamics. We make the following key innovations in our design: (i) the use of relational features as inputs to the deep neural network approximating the decision space, which enables our algorithm to generalize to diverse network conditions, (ii) the use of packet-centric decisions to transform the routing problem into an episodic task by viewing packets, rather than wireless devices, as reinforcement learning agents, which provides a natural way to propagate and model rewards accurately during learning, and (iii) the use of extended-time actions to model the time spent by a packet waiting in a queue, which reduces the amount of training data needed and allows the learning algorithm to converge more quickly. We evaluate our routing algorithm using a packet-level simulator and show that the policy our algorithm learns during training is able to generalize to larger and more congested networks, different topologies, and diverse link dynamics. Our algorithm outperforms shortest path and backpressure routing with respect to packets delivered and delay per packet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源