论文标题

元容器的Iwahori Whittaker功能和超对称晶格模型

Metaplectic Iwahori Whittaker functions and supersymmetric lattice models

论文作者

Brubaker, Ben, Buciumas, Valentin, Bump, Daniel, Gustafsson, Henrik P. A.

论文摘要

在本文中,我们计算$ n $ fold Metaplectic covers $ \ widetilde {g} $ of $ \ mathbf {g} $ of $ \ mathbf {g}(f)$ a $ \ mathbf {g} $,带有$ \ mathbf {g} $ a splitimean local field field field组的新值$ \ widetilde {g} $ of $ \ wideTilde {g} $ of $ n $ fold Metaplede {对于每个IWAHORI WHITTAKER函数$ ϕ $,对于\ widetilde {g} $中的每一个$ g \,我们都会使用小说“向Vector-asazure-whittaker操作员”评估$ ϕ(g)$。一般公式和证明策略的灵感来自于整合系统理论中出现的想法。专门研究$ \ Mathbf {g} = \ MathBf {gl} _r $,我们构建了与量子仿射超级组$ u_q相关的新型的可解决的晶格模型(\ wideHat {\ mathfrak {\ mathfrak {gl}}}}(r | n)(r | n)(r | n)$,并证明其分区$ quals $ $ v)$ c(g)。为了证明这种平等,我们匹配了晶格模型侧(从杨 - 巴克斯特方程获得)上的复发关系与使用$ \ widetilde {g} $的表示理论得出的$ ϕ(g)$的复发关系。值得注意的是,指定分区函数的边界数据与确定Whittaker函数的所有值的数据之间存在培训。

In this paper we compute new values of Iwahori Whittaker functions on $n$-fold metaplectic covers $\widetilde{G}$ of $\mathbf{G}(F)$ with $\mathbf{G}$ a split reductive group over a non-archimedean local field $F$. For every Iwahori Whittaker function $ϕ$, and for every $g\in\widetilde{G}$, we evaluate $ϕ(g)$ by recurrence relations over the Weyl group using novel "vector Demazure-Whittaker operators." The general formula and strategy of proof are inspired by ideas appearing in the theory of integrable systems. Specializing to the case of $\mathbf{G} = \mathbf{GL}_r$, we construct a solvable lattice model of a new type associated with the quantum affine super group $U_q(\widehat{\mathfrak{gl}}(r|n))$ and prove that its partition function equals $ϕ(g)$. To prove this equality we match the recurrence relations on the lattice model side (obtained from the Yang-Baxter equation) to the recurrence relations for $ϕ(g)$ derived by using the representation theory of $\widetilde{G}$. Remarkably, there is a bijection between the boundary data specifying the partition function and the data determining all values of the Whittaker functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源