论文标题

阈值框架中引导程序测试的有效性

The validity of bootstrap testing in the threshold framework

论文作者

Giannerini, Simone, Goracci, Greta, Rahbek, Anders

论文摘要

我们考虑基于自举的测试对非线性阈值自回归(TAR)模型中的阈值效应。众所周知,基于渐近理论的经典测试往往在小型甚至中等样本量或估计参数表明非平稳性的情况下,往往会超大,因为在财务或气候数据的分析中经常见证。为了解决该问题,我们提出了最高拉格朗日乘数测试统计统计量(SLMB),其中零假设指定了针对TAR模型的替代方案的线性自回旋(AR)模型。我们考虑应用于SLMB统计数据并确定其有效性的递归引导程序。该结果是新的,需要在时间序列模型中进行引导分析的非标准结果证明;这包括大数字的统一自举法和一个自举函数中心限制定理。这些新结果也可以用作一个可以适应其他情况的一般理论框架,例如具有外在阈值变量的政权切换过程,或测试结构断裂。蒙特卡洛的证据表明,即使对于小样本,自举试验也具有正确的经验大小,并且与渐近测试相比,也没有经验能力的损失。此外,如果根据信息标准估算自动性的顺序,则不会影响其性能。最后,我们分析了一个短期序列的小组,以评估变暖对人口动态的影响。

We consider bootstrap-based testing for threshold effects in non-linear threshold autoregressive (TAR) models. It is well-known that classic tests based on asymptotic theory tend to be oversized in the case of small, or even moderate sample sizes, or when the estimated parameters indicate non-stationarity, as often witnessed in the analysis of financial or climate data. To address the issue we propose a supremum Lagrange Multiplier test statistic (sLMb), where the null hypothesis specifies a linear autoregressive (AR) model against the alternative of a TAR model. We consider a recursive bootstrap applied to the sLMb statistic and establish its validity. This result is new, and requires the proof of non-standard results for bootstrap analysis in time series models; this includes a uniform bootstrap law of large numbers and a bootstrap functional central limit theorem. These new results can also be used as a general theoretical framework that can be adapted to other situations, such as regime-switching processes with exogenous threshold variables, or testing for structural breaks. The Monte Carlo evidence shows that the bootstrap test has correct empirical size even for small samples, and also no loss of empirical power when compared to the asymptotic test. Moreover, its performance is not affected if the order of the autoregression is estimated based on information criteria. Finally, we analyse a panel of short time series to assess the effect of warming on population dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源