论文标题
关于结构定理和非饱和示例
On structure theorems and non-saturated examples
论文作者
论文摘要
对于任何最小系统$(x,t)$和$ d \ geq 1 $,都有一个关联的最小系统$(n_ {d}(x),\ Mathcal {g} _ {d}(t))$,其中$ \ Mathcal {G} _ {g} _ {d} _ {d} _ {d}(t)$是$ time $ time $ time time $ t time time time $ t \ cd。 t^2 \ times \ cdots \ times t^{d} $和$ n_ {d}(x)$是$ \ Mathcal {g} _ {d}(t)$下对角线的孔闭合。众所周知,$ n_d(x)$的最大$ d $ d $ d $ step pro-nilfactor是$ n_d(x_d)$,其中$ x_d $是$ x $的最大$ d $ d $ d $ d $ - 步骤pro-nilfactor。 在本文中,我们进一步研究了$ n_d(x)$的结构。我们表明,$ n_d(x)$的最大远端因子是$ n_d(x_ {dis})$,$ x_ {dis} $是$ x $的最大远端因子,并证明是最小的systems $(n_ {d}(d}(d}(x)(x),x),\ nathcal {g nathcal {g} g} $ sature n n $此外,构建了一个非饱和度量示例$(x,t)$,不是$ t \ times t^2 $饱和,是一个toeplitz的最小系统。
For any minimal system $(X,T)$ and $d\geq 1$ there is an associated minimal system $(N_{d}(X), \mathcal{G}_{d}(T))$, where $\mathcal{G}_{d}(T)$ is the group generated by $T\times\cdots\times T$ and $T\times T^2\times\cdots\times T^{d}$ and $N_{d}(X)$ is the orbit closure of the diagonal under $\mathcal{G}_{d}(T)$. It is known that the maximal $d$-step pro-nilfactor of $N_d(X)$ is $N_d(X_d)$, where $X_d$ is the maximal $d$-step pro-nilfactor of $X$. In this paper, we further study the structure of $N_d(X)$. We show that the maximal distal factor of $N_d(X)$ is $N_d(X_{dis})$ with $X_{dis}$ being the maximal distal factor of $X$, and prove that as minimal systems $(N_{d}(X), \mathcal{G}_{d}(T))$ has the same structure theorem as $(X,T)$. In addition, a non-saturated metric example $(X,T)$ is constructed, which is not $T\times T^2$-saturated and is a Toeplitz minimal system.