论文标题

在Facet Pivot单纯形方法上,用于线性编程II:线性迭代绑定

On the facet pivot simplex method for linear programming II: a linear iteration bound

论文作者

Yang, Yaguang

论文摘要

Hirsch的猜想指出,与n个方面的任何$ d $二维多层人物的直径最多等于$ n -d $。桑托斯(Santos)反驳了这一猜想(对赫希(Hirsch)猜想的反例,数学年鉴,172(1)383-412,2012)。桑托斯(Santos)工作的含义是,所有{\ it vertex}枢轴算法无法在最坏的情况下解决$ n -d $ dertex Pivot Itererations中的线性编程问题。 在这一系列论文的第一部分中,我们提出了一个{\ it facet}枢轴方法。在本文中,我们表明,在最坏的情况下,在最坏的情况下,提出的Facet Pivot方法可以解决规范的线性编程问题。这项工作的灵感来自Smale的问题9(下个世纪的数学问题,在Arnold,V。I。; Atiyah,M。; Lax,P。; Mazur,B。数学:前沿和观点,美国数学学会,271-294,1999)。

The Hirsch Conjecture stated that any $d$-dimensional polytope with n facets has a diameter at most equal to $n - d$. This conjecture was disproved by Santos (A counterexample to the Hirsch Conjecture, Annals of Mathematics, 172(1) 383-412, 2012). The implication of Santos' work is that all {\it vertex} pivot algorithms cannot solve the linear programming problem in the worst case in $n - d$ vertex pivot iterations. In the first part of this series of papers, we proposed a {\it facet} pivot method. In this paper, we show that the proposed facet pivot method can solve the canonical linear programming problem in the worst case in at most $n-d$ facet pivot iterations. This work was inspired by Smale's Problem 9 (Mathematical problems for the next century, In Arnold, V. I.; Atiyah, M.; Lax, P.; Mazur, B. Mathematics: frontiers and perspectives, American Mathematical Society, 271-294, 1999).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源