论文标题

isospin混合和最低t = 2中的立方同位多重质量方程

Isospin Mixing and the Cubic Isobaric Multiplet Mass Equation in the Lowest T = 2, A = 32 Quintet

论文作者

Kamil, M., Triambak, S., Magilligan, A., García, A., Brown, B. A., Adsley, P., Bildstein, V., Burbadge, C., Varela, A. Diaz, Faestermann, T., Garrett, P. E., Hertenberger, R., Kheswa, N. Y., Leach, K. G., Lindsay, R., Marín-Lámbarri, D. J., Moradi, F. Ghazi, Mukwevho, N. J., Neveling, R., Ondze, J. C. Nzobadila, Papka, P., Pellegri, L., Pesudo, V., Rebeiro, B. M., Scheck, M., Smit, F. D., Wirth, H. -F.

论文摘要

已知等同的多重质量方程(IMME)在第一个t = 2中分解,a = 32 isospin五重奏。在这项工作中,我们将高分辨率的实验数据与最先进的壳型计算相结合,以研究同义混合,作为这种违规的可能原因。实验数据用于验证用新开发的壳型汉密尔顿人计算出的等音混合矩阵元素。我们的分析表明,与nonalog t = 1状态混合在一起有助于IMME崩溃,这是对多重组不可避免的异常立方术语的要求。

The isobaric multiplet mass equation (IMME) is known to break down in the first T = 2, A = 32 isospin quintet. In this work we combine high-resolution experimental data with state-of-the-art shell-model calculations to investigate isospin mixing as a possible cause for this violation. The experimental data are used to validate isospin-mixing matrix elements calculated with newly developed shell-model Hamiltonians. Our analysis shows that isospin mixing with nonanalog T = 1 states contributes to the IMME breakdown, making the requirement of an anomalous cubic term inevitable for the multiplet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源