论文标题

EEG信号神经解码的不确定性检测和降低

Uncertainty Detection and Reduction in Neural Decoding of EEG Signals

论文作者

Duan, Tiehang, Wang, Zhenyi, Liu, Sheng, Srihari, Sargur N., Yang, Hui

论文摘要

基于深神经网络的EEG解码系统已广泛用于大脑计算机界面(BCI)的决策。但是,鉴于脑电图信号的显着差异和噪声,它们的预测可能是不可靠的。先前关于脑电图分析的研究主要集中于源信号中噪声模式的探索,而解码过程中的不确定性在很大程度上没有探索。自动检测和减少这种解码不确定性对于BCI运动图像应用(例如机器人臂控制等)很重要,在这项工作中,我们提出了一个不确定性估计和降低模型(UNCER),以量化和减轻EEEG解码过程中的不确定性。它利用了面向辍学方法和贝叶斯神经网络的组合来估计不确定性估计,以将输入信号中的不确定性和模型参数中的不确定性纳入。我们进一步提出了一种基于数据增强的方法,以减少不确定性。该模型可以集成到当前广泛使用的EEG神经解码器中,而不会改变体系结构。我们进行了广泛的实验,以实现不确定性估计以及对两个公共运动图像数据集上的受试者内EEG解码和跨主题EEG解码的减少,在此,所提出的模型在估计不确定性的质量以及不确定性降低的有效性方面都取得了重大改善。

EEG decoding systems based on deep neural networks have been widely used in decision making of brain computer interfaces (BCI). Their predictions, however, can be unreliable given the significant variance and noise in EEG signals. Previous works on EEG analysis mainly focus on the exploration of noise pattern in the source signal, while the uncertainty during the decoding process is largely unexplored. Automatically detecting and reducing such decoding uncertainty is important for BCI motor imagery applications such as robotic arm control etc. In this work, we proposed an uncertainty estimation and reduction model (UNCER) to quantify and mitigate the uncertainty during the EEG decoding process. It utilized a combination of dropout oriented method and Bayesian neural network for uncertainty estimation to incorporate both the uncertainty in the input signal and the uncertainty in the model parameters. We further proposed a data augmentation based approach for uncertainty reduction. The model can be integrated into current widely used EEG neural decoders without change of architecture. We performed extensive experiments for uncertainty estimation and its reduction in both intra-subject EEG decoding and cross-subject EEG decoding on two public motor imagery datasets, where the proposed model achieves significant improvement both on the quality of estimated uncertainty and the effectiveness of uncertainty reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源