论文标题
存在通过最小化运动的双线非局部非局部进化方程的变分溶液的存在
Existence of variational solutions to doubly nonlinear nonlocal evolution equations via minimizing movements
论文作者
论文摘要
我们证明存在一类双线非局部非局部进化方程的变化解,其原型是双相方程\ begin {align*} \ partial_t u^m&+^m&+^m&+ text {p.v。} {p.v。} \ frac {| u(x,t)-u(y,t)|^{p-2}(u(x,x,t)-u(y,t))}} {| x-y |^|^{n+ps}}}} \\&+a (x,y)\ frac {| u(x,x,t)-u(y,t)|^{q-2}(u(x,x,t)-u(y,t))} {| x-y |^{n+qr}} \,dy = 0,\,m> 0,\,p> 1,\,s,r \ in(0,1)。 \ end {align*} 我们利用了最小化Degiorgi和Ambrosio开创的运动的方法,并由Bögelein,Duzaar,Marcellini和合着者进行了精炼,并研究了非标准性生长的非线性抛物线方程。
We prove existence of variational solutions for a class of doubly nonlinear nonlocal evolution equations whose prototype is the double phase equation \begin{align*} \partial_t u^m &+ \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}}\\&+a(x,y)\frac{|u(x,t)-u(y,t)|^{q-2}(u(x,t)-u(y,t))}{|x-y|^{N+qr}} \,dy = 0,\,m>0,\,p>1,\,s,r\in (0,1). \end{align*} We make use of the approach of minimizing movements pioneered by DeGiorgi and Ambrosio and refined by Bögelein, Duzaar, Marcellini, and co-authors to study nonlinear parabolic equations with non-standard growth.