论文标题
非线性绝热电子血浆波。 ii。申请
Nonlinear adiabatic electron plasma waves. II. Applications
论文作者
论文摘要
在本文中,我们使用了同伴论文中得出的一般理论[M. Tacu和D.Bénisti,物理。等离子体(2021)]为了解决有关非线性电子血浆波(EPW)的几个长期存在的问题。首先,我们讨论了与所谓的伯恩斯坦 - 格林 - 克鲁斯卡尔模式的固定解决方案的相关性和实用性,以模拟缓慢变化的波。其次,我们在最初的麦克斯韦血浆中生长的EPW的波浪破裂极限得出了上限。此外,我们显示了此限制的简单依赖性,作为$kλ_d$,$ k $的函数,$ k $是vavenumber和$λ_d$ debye长度。第三,我们明确地得出了统治缓慢生长的等离子体波的演化的包膜方程,直到接近波浪破裂极限的幅度。第四,我们通过求解EPW的非线性,非平稳性,射线示踪方程,以及一个简单的模型,用于刺激拉曼散射,估计波前弯曲引起的横向波数的生长。
In this article, we use the general theory derived in the companion paper [M. Tacu and D. Bénisti, Phys. Plasmas (2021)] in order to address several long-standing issues regarding nonlinear electron plasma waves (EPW's). First, we discuss the relevance, and practical usefulness, of stationary solutions to the Vlasov-Poisson system, the so-called Bernstein-Greene-Kruskal modes, to model slowly varying waves. Second, we derive an upper bound for the wave breaking limit of an EPW growing in an initially Maxwellian plasma. Moreover, we show a simple dependence of this limit as a function of $kλ_D$, $k$ being the wavenumber and $λ_D$ the Debye length. Third, we explicitly derive the envelope equation ruling the evolution of a slowly growing plasma wave, up to an amplitude close to the wave breaking limit. Fourth, we estimate the growth of the transverse wavenumbers resulting from wavefront bowing by solving the nonlinear, nonstationary, ray tracing equations for the EPW, together with a simple model for stimulated Raman scattering.