论文标题

量子启发的SIBFA多体极化力场的开发:启用凝结相分子动力学模拟

Development of the Quantum Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed Phase Molecular Dynamics Simulations

论文作者

Naseem-Khan, Sehr, Lagardère, Louis, Narth, Christophe, Cisneros, G. Andrés, Ren, Pengyu, Gresh, Nohad, Piquemal, Jean-Philip

论文摘要

我们介绍了SIBFA的扩展(片段之间相互作用之间的相互作用总和计算出多体化的力场到凝结相分子动力学(MD)模拟。量子启发的SIBFA程序基于从局部分子轨道理论和其近距离的跨度分离能力(实现型号的繁殖型)的近距离分离能力(IT embodies insprodies)基础。四极杆)与短距离渗透校正(直至电荷 - 四极杆),交换型,多体偏光,多体电荷转移/传输,交换 - 局部分散和分散(最多可用于C10)已在Tinker-HP中集成了大规模的平行MD套件。 (SAPT(DFT))数据显示出令人满意的繁殖气相贡献和凝结相的性能,强调了其物理动机功能形式的重要性。

We present the extension of the SIBFA (Sum of Interactions Between Fragments Ab initio Computed many-body polarizable force field to condensed phase Molecular Dynamics (MD) simulations. The Quantum-Inspired SIBFA procedure is grounded on simplified integrals obtained from localized molecular orbital theory and achieves full separability of its intermolecular potential. It embodies long-range multipolar electrostatics (up to quadrupole) coupled to a short-range penetration correction (up to charge-quadrupole), exchange-repulsion, many-body polarization, many-body charge transfer/delocalization, exchange-dispersion and dispersion (up to C10). This enables the reproduction of all energy contributions of ab initio Symmetry-Adapted Perturbation Theory (SAPT(DFT)) gas phase reference computations. The SIBFA approach has been integrated within the Tinker-HP massively parallel MD package. To do so all SIBFA energy gradients have been derived and the approach has been extended to enable periodic boundary conditions simulations using Smooth Particle Mesh Ewald. This novel implementation also notably includes a computationally tractable simplification of the many-body charge transfer/delocalization contribution. As a proof of concept, we perform a first computational experiment defining a water model fitted on a limited set of (SAPT(DFT)) data. SIBFA is shown to enable a satisfactory reproduction of both gas phase energetic contributions and condensed phase properties highlighting the importance of its physically-motivated functional form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源