论文标题

一般多通道功能的高斯 - 热点矩不变

Gaussian-Hermite Moment Invariants of General Multi-Channel Functions

论文作者

Mo, Hanlin, Li, Hua, Zhao, Guoying

论文摘要

随着数据采集技术的发展,在许多领域中收集并广泛使用了大量的多通道数据。其中大多数(例如RGB图像和向量场)可以表示为不同类型的多通道功能。用于识别兴趣模式的多通道数据的特征提取是一项至关重要但具有挑战性的任务。本文着重于构建一般多通道功能的基于力矩的特征。具体而言,我们定义了两个变换模型,即旋转 - 仿冒变换和总旋转变换,以描述多通道数据的实际变形。然后,我们设计了一个结构框架,以系统地为这两个变换模型生成高斯 - 热矩不变。这是文献中首次提出统一的框架来构建一般多通道函数的正交矩不变。给定特定类型的多通道数据,我们演示了如何利用新方法来得出所有可能的不变性并消除它们之间的依赖性。我们获得具有低阶和低度的独立不变式集合,用于RGB图像,2D矢量场和颜色卷数据。根据合成和真实的多通道数据,我们进行了广泛的实验,以评估这些不变性的稳定性和可区分性及其对噪声的稳健性。结果表明,在RGB图像分类中,新的力矩不变的多渠道数据和2D矢量场中涡流检测中的多渠道数据的不变性明显优于上一刻。

With the development of data acquisition technology, large amounts of multi-channel data are collected and widely used in many fields. Most of them, such as RGB images and vector fields, can be expressed as different types of multi-channel functions. Feature extraction of multi-channel data for identifying interest patterns is a critical but challenging task. This paper focuses on constructing moment-based features of general multi-channel functions. Specifically, we define two transform models, rotation-affine transform and total rotation transform, to describe real deformations of multi-channel data. Then, we design a structural framework to generate Gaussian-Hermite moment invariants for these two transform models systematically. It is the first time that a unified framework has been proposed in the literature to construct orthogonal moment invariants of general multi-channel functions. Given a specific type of multi-channel data, we demonstrate how to utilize the new method to derive all possible invariants and eliminate dependences among them. We obtain independent sets of invariants with low orders and low degrees for RGB images, 2D vector fields and color volume data. Based on synthetic and real multi-channel data, we conduct extensive experiments to evaluate the stability and discriminability of these invariants and their robustness to noise. The results show that new moment invariants significantly outperform previous moment invariants of multi-channel data in RGB image classification and vortex detection in 2D vector fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源