论文标题
GP-HMAT:可扩展,$ {O}(n \ log(n))$高斯进程回归使用层次级别的低级矩阵
GP-HMAT: Scalable, ${O}(n\log(n))$ Gaussian Process Regression with Hierarchical Low-Rank Matrices
论文作者
论文摘要
高斯工艺(GP)是一种强大而广泛使用的回归技术。 GP回归的主要构建块是协方差内核,它表征了随机场中对之间的关系。但是,找到最佳内核的优化需要几个大规模且通常是非结构化的矩阵倒置。我们通过引入一个名为HMAT的层次矩阵方法来应对这一挑战,该方法以递归方式有效地分解了矩阵结构,将矩阵结构分解成明显较小的矩阵,在这些矩阵中,可以将直接方法用于反转。我们的矩阵分区使用数据点的特定聚合策略,该策略促进了分层核矩阵中偏高块的低排列结构。我们采用随机线性代数法来减少矩阵,而在不分解大矩阵的情况下,在低级别的离子块块上降低了矩阵。我们为矩阵的反转提供了分析错误和成本估计,通过数值计算进行经验调查它们,并证明了我们的方法在三个涉及工程问题和大规模实际数据集的数值示例上的应用。我们提供了GP-HMAT的计算机实现,适用于GP可能性和衍生计算的HMAT以及在真实数据集上的最后一个数值示例的实现。与内置$ \ backslash $运算符相比,我们证明了HMAT方法的卓越可扩展性,用于大规模线性求解$ \ bf {a} \ bf {x} = \ bf {y} $通过可重复的可重复和可验证的经验研究。讨论了将未来的研究讨论层次分层(HSS)矩阵的扩展。
A Gaussian process (GP) is a powerful and widely used regression technique. The main building block of a GP regression is the covariance kernel, which characterizes the relationship between pairs in the random field. The optimization to find the optimal kernel, however, requires several large-scale and often unstructured matrix inversions. We tackle this challenge by introducing a hierarchical matrix approach, named HMAT, which effectively decomposes the matrix structure, in a recursive manner, into significantly smaller matrices where a direct approach could be used for inversion. Our matrix partitioning uses a particular aggregation strategy for data points, which promotes the low-rank structure of off-diagonal blocks in the hierarchical kernel matrix. We employ a randomized linear algebra method for matrix reduction on the low-rank off-diagonal blocks without factorizing a large matrix. We provide analytical error and cost estimates for the inversion of the matrix, investigate them empirically with numerical computations, and demonstrate the application of our approach on three numerical examples involving GP regression for engineering problems and a large-scale real dataset. We provide the computer implementation of GP-HMAT, HMAT adapted for GP likelihood and derivative computations, and the implementation of the last numerical example on a real dataset. We demonstrate superior scalability of the HMAT approach compared to built-in $\backslash$ operator in MATLAB for large-scale linear solves $\bf{A}\bf{x} = \bf{y}$ via a repeatable and verifiable empirical study. An extension to hierarchical semiseparable (HSS) matrices is discussed as future research.