论文标题

外部注意力辅助多相脾血管损伤细分有限的数据

External Attention Assisted Multi-Phase Splenic Vascular Injury Segmentation with Limited Data

论文作者

Zhou, Yuyin, Dreizin, David, Wang, Yan, Liu, Fengze, Shen, Wei, Yuille, Alan L.

论文摘要

脾脏是钝性腹部创伤中最常见的固体器官之一。从多相CT进行自动分割系统来开发用于脾血管损伤的自动分割系统可以增强严重性分级,以改善临床决策支持和结果预测。然而,由于以下原因,准确的脾血管损伤的分割是具有挑战性的:1)脾血管损伤的形状,质地,大小和整体外观可能高度变化; 2)数据获取是一个复杂且昂贵的程序,需要数据科学家和放射科医生的大量努力,这使得大规模通信的数据集一般很难获取。 鉴于这些挑战,我们在此设计了一个用于多相脾血管损伤细分的新型框架,尤其是数据有限。一方面,我们建议利用外部数据来挖掘伪脾膜,因为空间注意力被称为外部注意力,以指导脾血管损伤的分割。另一方面,我们开发了一个综合阶段增强模块,该模块基于生成的对抗网络,用于通过完全利用不同阶段之间的关系来填充内部数据。通过在培训期间共同强制执行外部注意力并填充内部数据表示,我们提出的方法在平均DSC方面优于其他竞争方法,并实质上将流行的DeepLab-V3+基线提高了7%以上,这证实了其有效性。

The spleen is one of the most commonly injured solid organs in blunt abdominal trauma. The development of automatic segmentation systems from multi-phase CT for splenic vascular injury can augment severity grading for improving clinical decision support and outcome prediction. However, accurate segmentation of splenic vascular injury is challenging for the following reasons: 1) Splenic vascular injury can be highly variant in shape, texture, size, and overall appearance; and 2) Data acquisition is a complex and expensive procedure that requires intensive efforts from both data scientists and radiologists, which makes large-scale well-annotated datasets hard to acquire in general. In light of these challenges, we hereby design a novel framework for multi-phase splenic vascular injury segmentation, especially with limited data. On the one hand, we propose to leverage external data to mine pseudo splenic masks as the spatial attention, dubbed external attention, for guiding the segmentation of splenic vascular injury. On the other hand, we develop a synthetic phase augmentation module, which builds upon generative adversarial networks, for populating the internal data by fully leveraging the relation between different phases. By jointly enforcing external attention and populating internal data representation during training, our proposed method outperforms other competing methods and substantially improves the popular DeepLab-v3+ baseline by more than 7% in terms of average DSC, which confirms its effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源