论文标题
使用深厚的增强学习分析许多试剂的微型常规平衡模型
Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning
论文作者
论文摘要
实际经济体可以与许多异构代理人(例如消费者,公司和政府)建模为连续不完美的信息游戏。在这种情况下,动态通用平衡(DGE)模型通常用于宏观经济分析。但是,使用现有的理论或计算方法,找到一般的均衡是在挑战,尤其是在使用微观基础来建模个体试剂时。在这里,我们展示了如何使用深层多代理增强学习(MARL)在微型基础DGE模型中找到代理类型的$ε$ -META-EQUILIBRIA。尽管标准MAL无法学习非平凡的解决方案,但我们的结构化学习课程可以稳定地收敛到有意义的解决方案。从概念上讲,我们的方法更加灵活,并且不需要不切实际的假设,例如连续的市场清理,这些假设通常用于分析性障碍。此外,我们的端到端GPU实施可以与大量RL经济代理商快速实时融合。我们以100名工人消费者,10家公司和一名征税和重新分配的社会规划师的方式展示了我们的开放和封闭的真实企业周期(RBC)模型(RBC)模型。通过最佳响应分析,我们验证了学习的解决方案是$ε$ -META-EQUILIBRIA,表明它们与经济直觉保持一致,并表明我们的方法可以在开放式RBC模型中学习一系列质量上不同的$ε$ -META-Equilibria。因此,我们表明,硬件加速MAL是一个有前途的框架,用于建模基于微观基础的经济体的复杂性。
Real economies can be modeled as a sequential imperfect-information game with many heterogeneous agents, such as consumers, firms, and governments. Dynamic general equilibrium (DGE) models are often used for macroeconomic analysis in this setting. However, finding general equilibria is challenging using existing theoretical or computational methods, especially when using microfoundations to model individual agents. Here, we show how to use deep multi-agent reinforcement learning (MARL) to find $ε$-meta-equilibria over agent types in microfounded DGE models. Whereas standard MARL fails to learn non-trivial solutions, our structured learning curricula enable stable convergence to meaningful solutions. Conceptually, our approach is more flexible and does not need unrealistic assumptions, e.g., continuous market clearing, that are commonly used for analytical tractability. Furthermore, our end-to-end GPU implementation enables fast real-time convergence with a large number of RL economic agents. We showcase our approach in open and closed real-business-cycle (RBC) models with 100 worker-consumers, 10 firms, and a social planner who taxes and redistributes. We validate the learned solutions are $ε$-meta-equilibria through best-response analyses, show that they align with economic intuitions, and show our approach can learn a spectrum of qualitatively distinct $ε$-meta-equilibria in open RBC models. As such, we show that hardware-accelerated MARL is a promising framework for modeling the complexity of economies based on microfoundations.