论文标题
国家依赖性的重要性抽样,以估计独立随机变量总和的功能的期望
State-dependent Importance Sampling for Estimating Expectations of Functionals of Sums of Independent Random Variables
论文作者
论文摘要
估计应用于随机变量总和(RV)的功能的期望是在许多具有挑战性的应用中遇到的一个众所周知的问题。通常,这些数量的封闭式表达式无法触及。天真的蒙特卡洛模拟是另一种方法。但是,此方法需要许多样本来解决罕见的事件问题。因此,使用降低方差技术来开发快速有效的估计方法至关重要。在这项工作中,我们使用重要性采样(IS),以其在需要更少的计算以达到相同准确性要求的情况下而闻名。我们提出了一个基于随机最佳控制公式的状态依赖性的方案,其中控制取决于状态和时间。我们的目标是计算稀有的事件数量,这些事件数量可以写成对独立RV的功能的期望。所提出的算法是通用的,可以在不限制的RVS的单变量分布或应用于总和的功能的情况下应用。我们将这种方法应用于对数正态分布,以计算独立RV的左尾和累积分布。对于每种情况,我们从数值上证明,所提出的状态依赖性是算法与处理类似问题的大多数众所周知的估计量相比。
Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore, it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements. We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.