论文标题
基于深度学习的稀疏全滑动图像分析,用于诊断胃肠化生
Deep Learning-Based Sparse Whole-Slide Image Analysis for the Diagnosis of Gastric Intestinal Metaplasia
论文作者
论文摘要
近年来,深度学习已成功地用于自动化诊断组织病理学的各种任务。但是,小型利益区域(ROI)的快速和可靠定位仍然是一个关键挑战,因为歧视性的形态特征通常仅占用一小部分吉吉像素尺度的全斜线图像(WSI)。在本文中,我们提出了一种稀疏的WSI分析方法,用于快速识别用于WSI级分类的高功率ROI。我们开发了一个受早期分类文献启发的评估框架,以量化稀疏分析方法的诊断性能与推理时间之间的权衡。我们测试了我们在病理学中的常见但耗时的任务 - 诊断苏木精和曙红(H&E)在内窥镜活检标本中染色的幻灯片上诊断胃肠道化生(GIM)的方法。 GIM是沿胃癌发展途径的众所周知的前体病变。我们对方法的性能和推理时间进行了彻底的评估,对GIM阳性和GIM阴性WSI进行了测试集,发现我们的方法在所有正wsi中成功地检测到GIM,并且在接收器操作特征曲线(AUC)下的WSI-LEVEL分类区域为0.98和平均精度(AP)为0.95。此外,我们表明我们的方法可以在不到一分钟的标准CPU中获得这些指标。我们的结果适用于开发可以轻松部署在临床环境中的神经网络的目标,以支持病理学家在WSI中快速定位和诊断小规模的形态特征。
In recent years, deep learning has successfully been applied to automate a wide variety of tasks in diagnostic histopathology. However, fast and reliable localization of small-scale regions-of-interest (ROI) has remained a key challenge, as discriminative morphologic features often occupy only a small fraction of a gigapixel-scale whole-slide image (WSI). In this paper, we propose a sparse WSI analysis method for the rapid identification of high-power ROI for WSI-level classification. We develop an evaluation framework inspired by the early classification literature, in order to quantify the tradeoff between diagnostic performance and inference time for sparse analytic approaches. We test our method on a common but time-consuming task in pathology - that of diagnosing gastric intestinal metaplasia (GIM) on hematoxylin and eosin (H&E)-stained slides from endoscopic biopsy specimens. GIM is a well-known precursor lesion along the pathway to development of gastric cancer. We performed a thorough evaluation of the performance and inference time of our approach on a test set of GIM-positive and GIM-negative WSI, finding that our method successfully detects GIM in all positive WSI, with a WSI-level classification area under the receiver operating characteristic curve (AUC) of 0.98 and an average precision (AP) of 0.95. Furthermore, we show that our method can attain these metrics in under one minute on a standard CPU. Our results are applicable toward the goal of developing neural networks that can easily be deployed in clinical settings to support pathologists in quickly localizing and diagnosing small-scale morphologic features in WSI.