论文标题
无序的非热系统中的散装对应关系
Bulk-Bulk Correspondence in Disordered Non-Hermitian Systems
论文作者
论文摘要
在开放和周期性的边界条件下计算的特征值(称为{\ it bulk-bulk对应}($ \ MATHCAL {BBC} $)之间的特征值可以在具有非炎性皮肤效应(NHSE)的系统中破坏。尽管在干净的非富甲系统中,普遍的布里鲁因区(GBZ)理论取得了巨大的成功,但是当翻译对称性被打破时,GBZ理论的适用性值得怀疑。因此,重建用于疾病样本的$ \ MATHCAL {BBC} $是非常有价值的,该样本扩展了GBZ理论在非避风乱个系统中的应用。在这里,我们提出了一个计划重建$ \ Mathcal {BBC} $的方案,该方案可以被视为优化问题的解决方案。通过分析解决此优化问题,我们重建了$ \ Mathcal {BBC} $,并在几种典型的非温和派模型中获得修改后的GBZ理论。修改后的GBZ理论给出了NHSE的精确描述,该理论预测了引人入胜的疾病增强和无序的NHSES。
The consistency between eigenvalues calculated under open and periodic boundary conditions, named as {\it bulk-bulk correspondence} ($\mathcal{BBC}$), can be destroyed in systems with non-Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the $\mathcal{BBC}$ for disorder samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme reconstructing $\mathcal{BBC}$, which can be regarded as the solution of an optimization problem. By solving this optimization problem analytically, we reconstruct the $\mathcal{BBC}$ and obtain the modified GBZ theory in several prototypical disordered non-Hermitian models. The modified GBZ theory gives a precise description of NHSE, which predicts the intriguing disorder-enhanced and disorder-irrelevant NHSEs.