论文标题
在准冠以looijenga对
On quasi-tame Looijenga pairs
论文作者
论文摘要
我们证明了Bousseau,van Garrel和名称的猜想,在适当的阳性条件下,looijenga的较高属于Gromoijenga的最大接触型Gromov-witten不变性属于Gromov-Witten/gopakumar-Vafa类型的其他曲线不变性。该证明由封闭形式的$ q $ - 归水的重新调整,对存在无限散射的量子热带顶点计算对数不变的计算。 $ q $ series的结果身份似乎是新的,并且具有独立的组合兴趣。
We prove a conjecture of Bousseau, van Garrel and the first-named author relating, under suitable positivity conditions, the higher genus maximal contact log Gromov-Witten invariants of Looijenga pairs to other curve counting invariants of Gromov-Witten/Gopakumar-Vafa type. The proof consists of a closed-form $q$-hypergeometric resummation of the quantum tropical vertex calculation of the log invariants in presence of infinite scattering. The resulting identity of $q$-series appears to be new and of independent combinatorial interest.