论文标题

癌症动态中数学和计算方法的评论

A Review of Mathematical and Computational Methods in Cancer Dynamics

论文作者

Uthamacumaran, Abicumaran, Zenil, Hector

论文摘要

癌症是由遗传不稳定性,环境信号,细胞蛋白流和基因调节网络之间的非线性反馈系统调节的复杂自适应疾病。了解癌症的控制论需要在多维时空尺度上整合信息动力学,包括遗传,转录,代谢,蛋白质组学,表观遗传和多细胞网络。但是,在癌症研究中,对这些复杂网络的时间序列分析仍然非常不存在。通过对细胞动力学的纵向筛查和时间序列分析,与动态系统有关的普遍观察到的因果模式可能会在癌症触发过程的信号传导或基因表达状态空间中进行自组织。这些模式,奇怪的吸引子可能是癌症进展的数学生物标志物。细胞内混乱和混乱的细胞种群动态的出现仍然是系统肿瘤学的新范式。因此,讨论了混乱而复杂的动力学作为此处癌细胞命运动力学的数学标志。鉴于假设可以提供时间分辨的单细胞数据集,因此对复杂性理论的跨学科工具和算法进行了调查,以研究癌症生态系统中的关键现象和混乱动态。总而言之,该视角从非线性动态,信息理论,反问题和复杂性方面培养了计算系统肿瘤学的直觉。我们强调了我们在统计机器学习领域看到的局限性,但是将其与所探索的数学工具提供的符号计算能力相结合的机会。

Cancers are complex adaptive diseases regulated by the nonlinear feedback systems between genetic instabilities, environmental signals, cellular protein flows, and gene regulatory networks. Understanding the cybernetics of cancer requires the integration of information dynamics across multidimensional spatiotemporal scales, including genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks. However, the time-series analysis of these complex networks remains vastly absent in cancer research. With longitudinal screening and time-series analysis of cellular dynamics, universally observed causal patterns pertaining to dynamical systems, may self-organize in the signaling or gene expression state-space of cancer triggering processes. A class of these patterns, strange attractors, may be mathematical biomarkers of cancer progression. The emergence of intracellular chaos and chaotic cell population dynamics remains a new paradigm in systems oncology. As such, chaotic and complex dynamics are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the assumption that time-resolved single-cell datasets are made available, a survey of interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude, the perspective cultivates an intuition for computational systems oncology in terms of nonlinear dynamics, information theory, inverse problems and complexity. We highlight the limitations we see in the area of statistical machine learning but the opportunity at combining it with the symbolic computational power offered by the mathematical tools explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源