论文标题

实验室等离子体中激光驱动的离子尺度磁层。 I.实验平台和第一个结果

Laser-Driven, Ion-Scale Magnetospheres in Laboratory Plasmas. I. Experimental Platform and First Results

论文作者

Schaeffer, D. B., Cruz, F. D., Dorst, R. S., Cruz, F., Heuer, P. V., Constantin, C. G., Pribyl, P., Niemann, C., Silva, L. O., Bhattacharjee, A.

论文摘要

磁层是嵌入在血浆流中的磁化体的无处不在的特征。航天器已经研究了数十年的大行星磁层,但离子尺度的“迷你”磁层可以为研究实验室中的动力学尺度,无碰撞血浆物理物理学提供独特的环境,以帮助验证较大系统的模型。在这项工作中,我们介绍了在UCLA的大型等离子体设备(LAPD)开发的独特的高重复率平台上进行的离子尺度磁层的初步实验。实验利用高重复率激光器将快速的等离子体流动到嵌入均匀磁化背景等离子体中的脉冲偶极磁场中。用磁通量探针测量具有高空间和时间分辨率的磁场的2D图,以检查一系列偶极子和上游参数的磁层和电流密度结构的演化。将结果与2D PIC模拟进行比较,以识别激光驱动等离子体的动力学结构和动力学的关键观察性特征。我们发现,在较高的偶极矩处形成不同的2D动力学尺度磁路和磁管电流结构,它们的位置与基于压力平衡和能量守恒的预测一致。

Magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale "mini" magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device (LAPD) at UCLA. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D PIC simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源