论文标题

条件良好的线性最小平方误差估计

Well-Conditioned Linear Minimum Mean Square Error Estimation

论文作者

Chong, Edwin K. P.

论文摘要

线性最小均方根误差(LMMSE)估计通常是不良条件的,这表明均方根误差的不受约束是过滤设计的方法不足。为了解决这个问题,我们首先开发了一个统一的框架来研究受限的LMMSE估计问题。使用此框架,我们探讨了涉及某个前滤器的约束LMMSE过滤器的重要结构特性。最优性在前滤器的可逆线性变换下是不变的。这通过预滤器的等效类别来参数化所有最佳过滤器。然后,我们澄清说,仅限制过滤器的等级并不能适当解决不良条件的问题。取而代之的是,我们采用了一个明确要求解决方案在某种特定意义上得到充分条件的约束。我们介绍了两个条件良好的过滤器,并表明它们会收敛到无约束的LMMSE滤波器,因为它们的截断功率损耗与低级别Wiener滤光片的速率相同。我们还向加权迹线的情况显示了扩展,并确定误差协方差为目标函数。最后,我们使用历史VIX数据的定量结果表明,我们的两个条件良好的过滤器的性能稳定,而标准LMMSE滤波器随条件数的增加而恶化。

Linear minimum mean square error (LMMSE) estimation is often ill-conditioned, suggesting that unconstrained minimization of the mean square error is an inadequate approach to filter design. To address this, we first develop a unifying framework for studying constrained LMMSE estimation problems. Using this framework, we explore an important structural property of constrained LMMSE filters involving a certain prefilter. Optimality is invariant under invertible linear transformations of the prefilter. This parameterizes all optimal filters by equivalence classes of prefilters. We then clarify that merely constraining the rank of the filter does not suitably address the problem of ill-conditioning. Instead, we adopt a constraint that explicitly requires solutions to be well-conditioned in a certain specific sense. We introduce two well-conditioned filters and show that they converge to the unconstrained LMMSE filter as their truncation-power loss goes to zero, at the same rate as the low-rank Wiener filter. We also show extensions to the case of weighted trace and determinant of the error covariance as objective functions. Finally, our quantitative results with historical VIX data demonstrate that our two well-conditioned filters have stable performance while the standard LMMSE filter deteriorates with increasing condition number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源