论文标题

$ k \toππ$衰减矩阵元素在物理点具有周期性边界条件

$K\toππ$ decay matrix elements at the physical point with periodic boundary conditions

论文作者

Tomii, Masaaki, Blum, Thomas, Hoying, Daniel, Izubuchi, Taku, Jin, Luchang, Jung, Chulwoo, Soni, Amarjit

论文摘要

我们使用周期性边界条件来计算$ k \toππ$矩阵元素,作为我们先前对G-Parity边界条件的研究的独立计算。我们介绍了$ k \toππ$三分函数的初步结果,并在$ 24^3上,a^{ - 1} = 1 $ 〜GEV,$ 2+1 $ -1 $-FRAIVERMöbiusDWFEnsemble在物理派派和rbc和UKQCD的$ depport for $ QCC的前景中,并讨论了$ qucd的$ unigormon $ underon的$ usecsion计算。 状况。

We calculate $K\toππ$ matrix elements using periodic boundary conditions as an independent calculation from our previous study with G-parity boundary conditions. We present our preliminary results for $K\toππ$ three-point functions and matrix elements on a $24^3, a^{-1} = 1$~GeV, $2+1$-flavor Möbius DWF ensemble at physical pion and kaon masses generated by the RBC and UKQCD collaborations and discuss the prospect for high-precision computation of $\varepsilon'$ with periodic boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源