论文标题

通过延迟的声学自我反馈来缓解湍流热声系统中极限周期的振荡

Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback

论文作者

Sahay, Ankit, Kushwaha, Abhishek, Pawar, Samadhan A., R., Midhun P., Dhadphale, Jayesh M., Sujith, R. I.

论文摘要

我们报告了通过延迟的声学自我反馈稳定湍流燃烧器中极限周期振荡的振幅死亡(AD)的发生。通过将燃烧器的声场与声波的抗节点位置附近的单个耦合管耦合,可以实现这种反馈控制。我们观察到,随着耦合管的长度的增加,极限周期振荡的振幅和主要频率逐渐减小。当耦合管的长度是燃烧器基本声学模式的波长的3/8倍时,观察到这些振荡的完全抑制(AD)。同时,当我们接近这种振幅死亡状态时,声压力的动力学行为从极限周期振荡状态转变为通过间歇性的低振幅混乱振荡。随着耦合管的长度的增加,我们还研究了不稳定火焰动力学与声场之间耦合性质的变化。我们发现,这些振荡之间的时间同步从同步周期性状态变化,通过间歇性同步通过对异步性进行了同步。此外,我们揭示了延迟的声学自反射与最佳反馈参数的应用完全破坏了热声不稳定期间燃烧器中存在的流体动力,声学和热释放速率波动之间的正反馈回路,从而缓解了不稳定性。我们预计这种方法将是一种可行且具有成本效益的选择,用于减轻在实用推进和电力系统中使用的湍流燃烧系统中的热声振荡。

We report the occurrence of amplitude death (AD) of limit cycle oscillations in a bluff body stabilized turbulent combustor through delayed acoustic self-feedback. Such feedback control is achieved by coupling the acoustic field of the combustor to itself through a single coupling tube attached near the anti-node position of the acoustic standing wave. We observe that the amplitude and dominant frequency of the limit cycle oscillations gradually decrease as the length of the coupling tube is increased. Complete suppression (AD) of these oscillations is observed when the length of the coupling tube is nearly 3/8 times the wavelength of the fundamental acoustic mode of the combustor. Meanwhile, as we approach this state of amplitude death, the dynamical behavior of acoustic pressure changes from the state of limit cycle oscillations to low-amplitude chaotic oscillations via intermittency. We also study the change in the nature of the coupling between the unsteady flame dynamics and the acoustic field as the length of the coupling tube is increased. We find that the temporal synchrony between these oscillations changes from the state of synchronized periodicity to desynchronized aperiodicity through intermittent synchronization. Furthermore, we reveal that the application of delayed acoustic self-feedback with optimum feedback parameters completely disrupts the positive feedback loop between hydrodynamic, acoustic, and heat release rate fluctuations present in the combustor during thermoacoustic instability, thus mitigating instability. We anticipate this method to be a viable and cost-effective option to mitigate thermoacoustic oscillations in turbulent combustion systems used in practical propulsion and power systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源