论文标题
互动3D地形创作和操纵的深层生成框架
Deep Generative Framework for Interactive 3D Terrain Authoring and Manipulation
论文作者
论文摘要
VR模型和游戏等多媒体应用程序最寻求了实际的虚拟地形的自动生成和(用户)的作者。地形所采用的最常见的表示是数字高程模型(DEM)。现有的地形创作和建模技术已经解决了其中的一些问题,可以广泛地分类为:程序建模,仿真方法和基于示例的方法。在本文中,我们提出了一个新颖的现实地形创作框架,该框架由VAE和生成有条件的GAN模型的组合提供动力。我们的框架是一种基于示例的方法,它试图通过从现实世界地形数据集中学习潜在空间来克服现有方法的局限性。这个潜在空间使我们能够从单个输入以及地形之间的插值生成多种地形,同时使生成的地形接近现实世界数据分布。我们还开发了一种交互式工具,该工具使用户可以通过极简输入生成各种地形。我们进行彻底的定性和定量分析,并与其他SOTA方法进行比较。我们打算将代码/工具发布给学术界。
Automated generation and (user) authoring of the realistic virtual terrain is most sought for by the multimedia applications like VR models and gaming. The most common representation adopted for terrain is Digital Elevation Model (DEM). Existing terrain authoring and modeling techniques have addressed some of these and can be broadly categorized as: procedural modeling, simulation method, and example-based methods. In this paper, we propose a novel realistic terrain authoring framework powered by a combination of VAE and generative conditional GAN model. Our framework is an example-based method that attempts to overcome the limitations of existing methods by learning a latent space from a real-world terrain dataset. This latent space allows us to generate multiple variants of terrain from a single input as well as interpolate between terrains while keeping the generated terrains close to real-world data distribution. We also developed an interactive tool, that lets the user generate diverse terrains with minimalist inputs. We perform thorough qualitative and quantitative analysis and provide comparisons with other SOTA methods. We intend to release our code/tool to the academic community.