论文标题
三角洲的渐近结果的扩展,涉及确定的积分
An extension of an asymptotic result of Tricomi concerning a definite integral
论文作者
论文摘要
我们考虑F.G.考虑的积分的扩展Tricomi由\ [\ int _ { - \ infty}^\ Infty X E^{ - X^2}(\ frac {1} {2} {2}+\ frac {1} {2} {2} \ mbox {2} \ mbox {erf} {erf} \,x)该过程涉及变量的合适更改和互补错误函数$ \ mbox {erfc} \,x $的反转。提出了数值结果以证明扩展的准确性。 第二部分研究了翼型理论中产生的积分的扩展。
We consider the expansion of an integral considered by F.G. Tricomi given by \[\int_{-\infty}^\infty x e^{-x^2}(\frac{1}{2}+\frac{1}{2}\mbox{erf}\,x)^{m} dx\] as $m\to\infty$. The procedure involves a suitable change of variable and the inversion of the complementary error function $\mbox{erfc}\,x$. Numerical results are presented to demonstrate the accuracy of the expansion. A second part examines an extension of an integral arising in airfoil theory.