论文标题
邻居分区和罗杰斯 - 拉曼努扬身份的分子
Neighborly partitions and the numerators of Rogers-Ramanujan identities
论文作者
论文摘要
我们证明了两个分区身份,这些身份对罗杰斯 - 拉曼努扬的身份是双重的。这些身份的灵感来自(并证明)三种对象之间的对应关系:一种新型的分区(邻居分区),单一理想和某些无限图。
We prove two partition identities which are dual to the Rogers-Ramanujan identities. These identities are inspired by (and proved using) a correspondence between three kinds of objects: a new type of partitions (neighborly partitions), monomial ideals and some infinite graphs.