论文标题
MaskMTL:带有深度多任务学习的掩蔽面部图像中的属性预测
MaskMTL: Attribute prediction in masked facial images with deep multitask learning
论文作者
论文摘要
预测具有里程碑意义的免费面部图像中的属性本身是一项具有挑战性的任务,当由于口罩的使用而被遮住时,脸部被遮住了。利用身份验证或对个人电子小工具的安全登录的智能访问控制门可能利用面部作为生物特征性状。尤其是,共同199的大流行越来越多地验证了卫生和非接触式认同验证的本质。在这种情况下,口罩的使用变得更加不可避免,并且执行属性预测有助于将目标脆弱的群体隔离到社区传播或确保在协作环境中为他们疏远的社会疏远。我们通过有效地覆盖不同形状,大小和纹理的掩模来有效地建模通过戴口罩产生的可变性来创建一个蒙面的面部数据集。本文提出了一种深层多任务学习(MTL)方法,可以共同估算单个蒙版面部图像的各种异质属性。基准面属性UTKFACE数据集的实验结果表明,所提出的方法取代了其他竞争技术。源代码可在https://github.com/ritikajha/attribute-prediction-in-masked-facial-images-with-deep-multitask-learning上获得
Predicting attributes in the landmark free facial images is itself a challenging task which gets further complicated when the face gets occluded due to the usage of masks. Smart access control gates which utilize identity verification or the secure login to personal electronic gadgets may utilize face as a biometric trait. Particularly, the Covid-19 pandemic increasingly validates the essentiality of hygienic and contactless identity verification. In such cases, the usage of masks become more inevitable and performing attribute prediction helps in segregating the target vulnerable groups from community spread or ensuring social distancing for them in a collaborative environment. We create a masked face dataset by efficiently overlaying masks of different shape, size and textures to effectively model variability generated by wearing mask. This paper presents a deep Multi-Task Learning (MTL) approach to jointly estimate various heterogeneous attributes from a single masked facial image. Experimental results on benchmark face attribute UTKFace dataset demonstrate that the proposed approach supersedes in performance to other competing techniques. The source code is available at https://github.com/ritikajha/Attribute-prediction-in-masked-facial-images-with-deep-multitask-learning