论文标题

回归模型中的信息借用

Information Borrowing in Regression Models

论文作者

Zhang, Amy, Bao, Le, Daniels, Michael J.

论文摘要

模型开发通常会考虑数据结构,主题考虑因素,模型假设和拟合优度。为了诊断这些因素中的任何一个问题,了解更精细的回归模型估计值可能会有所帮助。我们提出了一种通过放置在数据簇上的权重从回归模型中分解点估计值的新方法。权重仅通过模型规范和数据可用性来告知权重,因此可以用来将数据不平衡和模型假设的效果明确地链接到实际模型估计。在线性模型中,重量矩阵已被理解为现有文献中的帽子矩阵。我们将其扩展到贝叶斯分层回归模型,这些模型通过随机效应之间的协方差结合了先前的信息和复杂的依赖性结构。我们表明,我们称之为借款因素的模型权重将收缩和信息借入到所有回归模型中。相比之下,帽子矩阵的重点主要集中在表明杠杆量的对角线上。我们还提供总结借贷因素并且实际上有用的指标。我们介绍了借贷因素和相关指标的理论特性,并在两个示例中证明了它们的用法。通过明确量化借贷和收缩,研究人员可以更好地整合域知识并评估模型性能以及数据属性(例如数据不平衡或影响力点)的影响。

Model development often takes data structure, subject matter considerations, model assumptions, and goodness of fit into consideration. To diagnose issues with any of these factors, it can be helpful to understand regression model estimates at a more granular level. We propose a new method for decomposing point estimates from a regression model via weights placed on data clusters. The weights are informed only by the model specification and data availability and thus can be used to explicitly link the effects of data imbalance and model assumptions to actual model estimates. The weight matrix has been understood in linear models as the hat matrix in the existing literature. We extend it to Bayesian hierarchical regression models that incorporate prior information and complicated dependence structures through the covariance among random effects. We show that the model weights, which we call borrowing factors, generalize shrinkage and information borrowing to all regression models. In contrast, the focus of the hat matrix has been mainly on the diagonal elements indicating the amount of leverage. We also provide metrics that summarize the borrowing factors and are practically useful. We present the theoretical properties of the borrowing factors and associated metrics and demonstrate their usage in two examples. By explicitly quantifying borrowing and shrinkage, researchers can better incorporate domain knowledge and evaluate model performance and the impacts of data properties such as data imbalance or influential points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源