论文标题
使用基于BERT的语言框架的选定Bhagavad Gita翻译的语义和情感分析
Semantic and sentiment analysis of selected Bhagavad Gita translations using BERT-based language framework
论文作者
论文摘要
众所周知,歌曲和诗歌的翻译不仅打破了节奏和押韵模式,而且还可能导致语义信息的丧失。 《博伽梵歌》是一本古老的印度教哲学文本,最初是用梵文写的,它在摩ab婆罗多战争之前以奎师那勋爵和阿朱那之间的对话为特色。 《博伽梵歌》还是印度教的关键神圣文本之一,被称为印度教吠陀语料库的最前沿。在过去的两个世纪中,西方学者的印度教哲学引起了很多兴趣。因此,Bhagavad Gita已翻译成多种语言。但是,没有太多的工作来验证英语翻译的质量。由深度学习提供动力的语言模型的最新进展不仅可以使翻译,而且可以更好地理解语言和情感分析的文本。我们的工作是由以深度学习方法推动的语言模型的最新进展激励。在本文中,我们提出了一个框架,该框架使用语义和情感分析比较了Bhagavad Gita的选定翻译(从梵文到英语)。我们使用手工标记的情感数据集来调整最先进的基于深度学习的语言模型,称为Transformers(BERT)的双向编码器表示。我们为跨翻译的选定章节和经文提供情感和语义分析。我们的结果表明,尽管各自翻译中的样式和词汇量差异很大,但情感分析和语义相似性表明传达的信息大多相似。
It is well known that translations of songs and poems not only break rhythm and rhyming patterns, but can also result in loss of semantic information. The Bhagavad Gita is an ancient Hindu philosophical text originally written in Sanskrit that features a conversation between Lord Krishna and Arjuna prior to the Mahabharata war. The Bhagavad Gita is also one of the key sacred texts in Hinduism and is known as the forefront of the Vedic corpus of Hinduism. In the last two centuries, there has been a lot of interest in Hindu philosophy from western scholars; hence, the Bhagavad Gita has been translated in a number of languages. However, there is not much work that validates the quality of the English translations. Recent progress of language models powered by deep learning has enabled not only translations but a better understanding of language and texts with semantic and sentiment analysis. Our work is motivated by the recent progress of language models powered by deep learning methods. In this paper, we present a framework that compares selected translations (from Sanskrit to English) of the Bhagavad Gita using semantic and sentiment analyses. We use hand-labelled sentiment dataset for tuning state-of-art deep learning-based language model known as bidirectional encoder representations from transformers (BERT). We provide sentiment and semantic analysis for selected chapters and verses across translations. Our results show that although the style and vocabulary in the respective translations vary widely, the sentiment analysis and semantic similarity shows that the message conveyed are mostly similar.