论文标题

GridTuner:重新研究时空预测模型的网格大小选择[技术报告]

GridTuner: Reinvestigate Grid Size Selection for Spatiotemporal Prediction Models [Technical Report]

论文作者

Jin, Jiabao, Cheng, Peng, Chen, Lei, Lin, Xuemin, Zhang, Wenjie

论文摘要

随着交通预测技术的发展,时空预测模型吸引了学术界和行业越来越多的关注。但是,大多数现有的研究都集中在减少模型的预测错误上,但忽略了由于区域内空间事件的不均匀分布而造成的错误。在本文中,我们研究了一个区域分配问题,即最佳的网格大小选择问题(OGSS),该问题旨在通过选择最佳网格大小来最大程度地减少时空预测模型的真实误差。为了解决OGSS,我们分析了时空预测模型的实际误差的上限,并通过最大程度地减少其上限来最大程度地减少实际误差。通过深入分析,我们发现,当模型网格数量从1增加到最大允许值时,实际误差的上限将减少,然后增加。然后,我们提出了两种算法,即三元搜索和迭代方法,以自动找到最佳的网格大小。最后,实验验证了预测误差的趋势与其上限相同,并且随着模型网格数量的增加,实际误差上限的变化趋势将减少,然后增加。同时,在案例研究中,通过选择最佳网格大小,可以提高基于最先进的基于预测的算法的订单,最高可提高13.6%,这显示了我们方法对时空预测模型进行调整区域分区的有效性。

With the development of traffic prediction technology, spatiotemporal prediction models have attracted more and more attention from academia communities and industry. However, most existing researches focus on reducing model's prediction error but ignore the error caused by the uneven distribution of spatial events within a region. In this paper, we study a region partitioning problem, namely optimal grid size selection problem (OGSS), which aims to minimize the real error of spatiotemporal prediction models by selecting the optimal grid size. In order to solve OGSS, we analyze the upper bound of real error of spatiotemporal prediction models and minimize the real error by minimizing its upper bound. Through in-depth analysis, we find that the upper bound of real error will decrease then increase when the number of model grids increase from 1 to the maximum allowed value. Then, we propose two algorithms, namely Ternary Search and Iterative Method, to automatically find the optimal grid size. Finally, the experiments verify that the error of prediction has the same trend as its upper bound, and the change trend of the upper bound of real error with respect to the increase of the number of model grids will decrease then increase. Meanwhile, in a case study, by selecting the optimal grid size, the order dispatching results of a state-of-the-art prediction-based algorithm can be improved up to 13.6%, which shows the effectiveness of our methods on tuning the region partition for spatiotemporal prediction models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源