论文标题

在非可逆动力图的凸组合下的可逆动力图的度量

Measure of invertible dynamical maps under convex combinations of noninvertible dynamical maps

论文作者

Jagadish, Vinayak, Srikanth, R., Petruccione, Francesco

论文摘要

我们研究了$(D+1)$概括的Pauli Dynalial Maps的凸组合,该地图在Hilbert dimension $ d $中。为了某些脱碳函数的选择,这些地图是不可理解的,并且在凸组合中也保持不变。对于以脱碳函数$(1-e^{ - ct})/n $为特征的动态地图,带有脱碳参数$ n $和衰减因子$ c $,我们评估了混合后获得的可逆地图的分数,这被发现与Dimential usperexpully afterential hignally d $ d $ d $。

We study the convex combinations of the $(d+1)$ generalized Pauli dynamical maps in a Hilbert space of dimension $d$. For certain choices of the decoherence function, the maps are noninvertible and they remain under convex combinations as well. For the case of dynamical maps characterized by the decoherence function $(1-e^{-ct})/n$ with the decoherence parameter $n$ and decay factor $c$, we evaluate the fraction of invertible maps obtained upon mixing, which is found to increase superexponentially with dimension $d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源