论文标题
分数双曲线凯勒 - 塞格系统的溶解度
Solvability of the Fractional Hyperbolic Keller-Segel System
论文作者
论文摘要
我们研究了趋化问题的数学建模的一种新的非局部方法,该方法描述了由于物质浓度,该方法描述了特定人群的随机运动。考虑到分数双曲线凯勒 - 塞格模型的初始有限值问题,我们证明了该问题的解决性。可溶性结果主要依赖于标量保护定律的分数和动力学表述。
We study a new nonlocal approach to the mathematical modelling of the Chemotaxis problem, which describes the random motion of a certain population due a substance concentration. Considering the initial-boundary value problem for the fractional hyperbolic Keller-Segel model, we prove the solvability of the problem. The solvability result relies mostly on fractional calculus and kinetic formulation of scalar conservation laws.