论文标题

$雷达^2 $:使用COTS MMWAVE RADAR的被动间谍雷达检测和定位

$Radar^2$: Passive Spy Radar Detection and Localization using COTS mmWave Radar

论文作者

Qiu, Yanlong, Zhang, Jiaxi, Chen, Yanjiao, Zhang, Jin, Ji, Bo

论文摘要

毫米波(mmwave)雷达在广泛的域中发现了应用程序,包括人类跟踪,健康监测和自主驾驶,以表现出色的性质和高范围的准确性。但是,如果用于恶意目的,这些功能也可能导致严重的安全和隐私问题。例如,用户的日常生活可以通过间谍雷达秘密监测。因此,有强烈的渴望开发可以检测和定位这种间谍雷达的系统。在本文中,我们建议使用单个商业现成(COTS)MMWAVE RADAR,是一种用于被动间谍检测和本地化的实用系统。具体来说,我们提出了一种新颖的\ textIt {频率组件检测}方法,以检测MMWave信号的存在,使用基于卷积神经网络(CNN)的波形分类器来区分MMWave Radar和Wigig信号,并使用基于Trianeculation局部化探测器的镜头,以基于探测器的探测器进行探测。 $ radar^2 $不仅适用于不同类型的MMWave雷达,而且还可以同时检测和定位多个雷达。最后,我们进行了广泛的实验,以评估各种环境中$ radar^2 $的有效性和鲁棒性。我们的评估结果表明,雷达检测率高于96 $ \%$,并且本地化误差在330万以内。结果还表明,$ radar^2 $对各种环境因素(例如,房间布局和人类活动)是有力的。

Millimeter-wave (mmWave) radars have found applications in a wide range of domains, including human tracking, health monitoring, and autonomous driving, for their unobtrusive nature and high range accuracy. These capabilities, however, if used for malicious purposes, could also result in serious security and privacy issues. For example, a user's daily life could be secretly monitored by a spy radar. Hence, there is a strong urge to develop systems that can detect and locate such spy radars. In this paper, we propose $Radar^2$, a practical system for passive spy radar detection and localization using a single commercial off-the-shelf (COTS) mmWave radar. Specifically, we propose a novel \textit{Frequency Component Detection} method to detect the existence of mmWave signals, distinguish between mmWave radar and WiGig signals using a waveform classifier based on a convolutional neural network (CNN), and localize spy radars using triangulation based on the detector's observations at multiple anchor points. Not only does $Radar^2$ work for different types of mmWave radar, but it can also detect and localize multiple radars simultaneously. Finally, we performed extensive experiments to evaluate the effectiveness and robustness of $Radar^2$ in various settings. Our evaluation results show that the radar detection rate is above 96$\%$ and the localization error is within 0.3m. The results also reveal that $Radar^2$ is robust against various environmental factors (e.g., room layout and human activities).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源