论文标题
双曲线扰动后出现的极限循环的多样性
Multiplicity of limit cycles that appear after perturbations of hyperbolic polycycles
论文作者
论文摘要
我们考虑双曲线多循环扰动时出现的极限循环。我们特别证明,如果这种发展发生在通用有限参数家族中,那么每个新的限制周期的多样性都不会超过多环中分隔连接的数量。
We consider the multiplicity of limit cycles that appear when a hyperbolic polycycle is perturbed. We prove, in particular, that if such unfolding happens in generic finite-parameter families, the multiplicity of every new limit cycle does not exceed the number of separatrix connections in the polycycle.