论文标题
从二阶差别几何形状到随机几何力学
From Second-Order Differential Geometry to Stochastic Geometric Mechanics
论文作者
论文摘要
经典的几何力学,包括对对称性的研究,拉格朗日和汉密尔顿力学以及汉密尔顿 - 雅各比理论,建立在几何结构上,例如喷气机,符号和接触。在本文中,我们将使用最初由L. Schwartz和P.-A开发的二阶(或随机)微分几何形状的部分遗忘框架。迈耶(Meyer),构建这些经典结构的二阶对应物。这些将使我们能够研究随机微分方程(SDE)的对称性,以建立随机的拉格朗日和汉密尔顿力学及其与二阶汉密尔顿 - 雅各布 - 贝尔曼(HJB)方程的关键关系。实际上,随机延长公式将得出以研究SDE和混合顺序的cartan对称性的对称性。随机汉密尔顿的方程将来自二阶符号结构,规范变换将导致HJB方程。 Riemannian歧管上的随机变异问题将提供与HJB ONE兼容的随机Euler-Lagrange方程,并等同于Riemannian版本的随机汉密尔顿方程。随机定理也将遵循。沿本文的鼓舞人心的例子将是Schrödinger在最佳运输中问题的丰富动力结构,后者也被视为量子力学的流体动力学解释的欧几里得版。
Classical geometric mechanics, including the study of symmetries, Lagrangian and Hamiltonian mechanics, and the Hamilton-Jacobi theory, are founded on geometric structures such as jets, symplectic and contact ones. In this paper, we shall use a partly forgotten framework of second-order (or stochastic) differential geometry, developed originally by L. Schwartz and P.-A. Meyer, to construct second-order counterparts of those classical structures. These will allow us to study symmetries of stochastic differential equations (SDEs), to establish stochastic Lagrangian and Hamiltonian mechanics and their key relations with second-order Hamilton-Jacobi-Bellman (HJB) equations. Indeed, stochastic prolongation formulae will be derived to study symmetries of SDEs and mixed-order Cartan symmetries. Stochastic Hamilton's equations will follow from a second-order symplectic structure and canonical transformations will lead to the HJB equation. A stochastic variational problem on Riemannian manifolds will provide a stochastic Euler-Lagrange equation compatible with HJB one and equivalent to the Riemannian version of stochastic Hamilton's equations. A stochastic Noether's theorem will also follow. The inspirational example, along the paper, will be the rich dynamical structure of Schrödinger's problem in optimal transport, where the latter is also regarded as a Euclidean version of hydrodynamical interpretation of quantum mechanics.