论文标题

探索姿势估计作为可见红外人员重新识别的一项辅助学习任务

On Exploring Pose Estimation as an Auxiliary Learning Task for Visible-Infrared Person Re-identification

论文作者

Miao, Yunqi, Huang, Nianchang, Ma, Xiao, Zhang, Qiang, Han, Jungong

论文摘要

由于可见的和红外模式之间存在巨大差异,可见的红外人员重新识别(VI-REID)一直在挑战。大多数开创性方法通过学习模态共享和与ID相关的功能来减少类内部变化和模式间差异。但是,在VI-REID中尚未完全利用明确的模态共享的提示,即身体关键点。此外,现有的特征学习范式对全局特征或分区特征条纹施加了约束,这忽略了全局和部分特征的预测一致性。为了解决上述问题,我们将姿势估计作为一项辅助学习任务,以在端到端框架中为VI-Reid任务提供帮助。通过以互惠互利的方式共同训练这两个任务,我们的模型学习了更高质量的模态共享和与ID相关的功能。最重要的是,对全球特征和本地特征的了解是通过层次功能约束(HFC)无缝同步的,在该功能约束(HFC)中,前者使用知识蒸馏策略来监督后者。两个基准VI-REID数据集的实验结果表明,所提出的方法始终通过明显的边距改善最新方法。具体而言,我们的方法可针对REGDB数据集上的最新方法实现近20美元的映射改进。我们有趣的发现突出了Vi-Reid中辅助任务学习的使用。

Visible-infrared person re-identification (VI-ReID) has been challenging due to the existence of large discrepancies between visible and infrared modalities. Most pioneering approaches reduce intra-class variations and inter-modality discrepancies by learning modality-shared and ID-related features. However, an explicit modality-shared cue, i.e., body keypoints, has not been fully exploited in VI-ReID. Additionally, existing feature learning paradigms imposed constraints on either global features or partitioned feature stripes, which neglect the prediction consistency of global and part features. To address the above problems, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework. By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features. On top of it, the learnings of global features and local features are seamlessly synchronized by Hierarchical Feature Constraint (HFC), where the former supervises the latter using the knowledge distillation strategy. Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins. Specifically, our method achieves nearly 20$\%$ mAP improvements against the state-of-the-art method on the RegDB dataset. Our intriguing findings highlight the usage of auxiliary task learning in VI-ReID.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源