论文标题

梅尔克森(Melkersson)延长Serre子类别的条件

Melkersson condition for extension of Serre subcategories

论文作者

Akray, Ismael, Mustafa, Runak H., Sazeedeh, Reza

论文摘要

让$ r $为可交换的noetherian戒指,让$ \ frak a $是$ r $的理想。在本文中,我们研究了Aghapournahr和Melkersson引入的某种条件,即$ c _ {\ frak a} $,以扩展两个子类别的$ r $ - 模型。我们扩展并概括了吉泽[Y1,Y2]的一些主要结果。作为子类别扩展的一个例子,我们研究了弱的Laskerian模块,并发现了一些条件,在这些条件下,弱的laskerian模块的局部协同学模块位于任意的Serre子类别中。最终,我们研究了Laskerian模块弱的局部同胞模块的辅助性。

Let $R$ be a commutative noetherian ring and let $\frak a$ be an ideal of $R$. In this paper, we study a certain condition, namely $C_{\frak a}$, introduced by Aghapournahr and Melkersson, on the extension of two subcategories of $R$-modules. We extend and generalize some of the main results of Yoshizawa [Y1,Y2]. As an example of extension of subcategories, we study the weakly Laskerian modules and we find some conditions under which the local cohomology modules of a weakly Laskerian module lie in an arbitrary Serre subcategory. Eventually, we investigate the cofiniteness of the local cohomology modules of weakly Laskerian modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源