论文标题
电信行业基于数据转换的优化客户流失预测模型
Data transformation based optimized customer churn prediction model for the telecommunication industry
论文作者
论文摘要
数据转换(DT)是一个将原始数据转移到支持特定分类算法的形式的过程,并有助于出于特殊目的分析数据。为了提高预测性能,我们研究了各种数据转换方法。这项研究是在电信行业(TCI)的客户流失预测(CCP)上下文中进行的,其中客户流失是一种常见现象。我们提出了一种将数据转换方法与CCP问题的机器学习模型相结合的新方法。我们对公开可用的TCI数据集进行了实验,并根据广泛使用的评估措施(例如AUC,精度,召回和F量)评估了性能。在这项研究中,我们提出了全面的比较,以肯定转化方法的效果。比较结果和统计测试证明,大多数提出的基于数据转换的优化模型可显着改善CCP的性能。总体而言,通过本手稿介绍了电信行业的高效且优化的CCP模型。
Data transformation (DT) is a process that transfers the original data into a form which supports a particular classification algorithm and helps to analyze the data for a special purpose. To improve the prediction performance we investigated various data transform methods. This study is conducted in a customer churn prediction (CCP) context in the telecommunication industry (TCI), where customer attrition is a common phenomenon. We have proposed a novel approach of combining data transformation methods with the machine learning models for the CCP problem. We conducted our experiments on publicly available TCI datasets and assessed the performance in terms of the widely used evaluation measures (e.g. AUC, precision, recall, and F-measure). In this study, we presented comprehensive comparisons to affirm the effect of the transformation methods. The comparison results and statistical test proved that most of the proposed data transformation based optimized models improve the performance of CCP significantly. Overall, an efficient and optimized CCP model for the telecommunication industry has been presented through this manuscript.