论文标题

带有彩色噪声的随机部分微分方程的解决方案的紧凑型支持属性

The compact support property for solutions to the stochastic partial differential equations with colored noise

论文作者

Han, Beom-Seok, Kim, Kunwoo, Yi, Jaeyun

论文摘要

我们研究了以下随机部分差分方程的解决方案的紧凑型支持属性:$ \ partial_t u = a^{ij} u_ {x^ix^j}(x^ix^j}(t,t,x)+b^{i} i} u_ {x^i} (t,x)\ in(0,\ infty)\ times {\ bf {r}}^d,$$,其中$ \ dot {f} $是一种在空间上是均匀的高斯噪声,它是白色的,在太空中是白色的,$ h(t,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,u)$ k^{ - 1}} | u(us) k(1+ | u |)$ for $λ\ in(0,1)$和$ k \ geq 1 $。我们表明,如果初始数据$ u_0 \ geq 0 $具有紧凑的支持,那么,在加强达兰在$ \ dot {f} $上的条件下(保证了弱解决方案的存在和Hölder的连续性),所有非弱解决方案的弱解决方案$ u(t,\ cdot)$均具有$ t的功能。 [Probab。理论相关。 Fields,93(3):325--358,1992]和Krylov [Probab。理论相关。 Fields,108(4):543--557,1997],其中仅显示由$(0,\ infty)\ times \ bf {r} $驱动的一维SPDES的紧凑型支持属性。

We study the compact support property for solutions of the following stochastic partial differential equations: $$\partial_t u = a^{ij}u_{x^ix^j}(t,x)+b^{i}u_{x^i}(t,x)+cu+h(t,x,u(t,x))\dot{F}(t,x),\quad (t,x)\in (0,\infty)\times{\bf{R}}^d,$$ where $\dot{F}$ is a spatially homogeneous Gaussian noise that is white in time and colored in space, and $h(t, x, u)$ satisfies $K^{-1}|u|^λ\leq h(t, x, u)\leq K(1+|u|)$ for $λ\in(0,1)$ and $K\geq 1$. We show that if the initial data $u_0\geq 0$ has a compact support, then, under the reinforced Dalang's condition on $\dot{F}$ (which guarantees the existence and the Hölder continuity of a weak solution), all nonnegative weak solutions $u(t, \cdot)$ have the compact support for all $t>0$ with probability 1. Our results extend the works by Mueller-Perkins [Probab. Theory Relat. Fields, 93(3):325--358, 1992] and Krylov [Probab. Theory Relat. Fields, 108(4):543--557, 1997], in which they show the compact support property only for the one-dimensional SPDEs driven by space-time white noise on $(0, \infty)\times \bf{R}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源